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ABSTRACT 

Cytoplasmic dynein 1 (dynein) is a microtubule motor that plays a role in mitosis, 

cell migration, and minus-end directed microtubule-based transport. The 

lissencephaly protein, Lis1, and its binding partner, Ndel1, are critical regulators 

of cytoplasmic dynein (Niethammer et al., 2000). In humans, haploinsufficiency of 

Lis1 leads to lissencephaly, a devastating developmental neurological disorder 

characterized by severe brain malformation, leading to cognitive and motor 

defects, and progressively worsening seizures (Dobyns et al., 1993). While Lis1 

is known to play a role in regulating dynein-dependent functions such as 

neuronal migration and mitotic spindle orientation during development, the 

protein is still highly expressed in the adult mouse nervous system, suggesting 

an important postdevelopmental role in neurons. Indeed, it has been established 

that Lis1 and Ndel1 regulate dynein-dependent axonal transport in mature 

neurons (Niethammer et al., 2000; Smith et al., 2000; Pandey and Smith, 2011; 

Klinman and Holzbaur, 2015). To further elucidate the importance of Lis1 in the 

adult nervous system, we generated a tamoxifen-inducible Lis1 knockout (KO) 

mouse to remove the gene post-developmentally. Using an actin promoter to 

drive expression of a tamoxifen-inducible cre recombinase, homozygous Lis1 KO 

caused the rapid onset of neurological symptoms, such as hind limb clasping and 

spinal kyphosis. Administration of tamoxifen resulted in dose-dependent onset of 

a severe phenotype, which correlated with the extent of recombination observed 
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in the midbrain/hindbrain. Chromatolysis, a sign of axonal dysfunction, was 

observed in neurons of brainstem cardiorespiratory nuclei of Lis1 KO animals. 

Additionally, transport defects, axonal swellings, and altered neurofilament 

distribution were observed in cultured DRG neurons from Lis1 KO mice. 

Restricting Lis1 KO to cardiomyocytes resulted in no observed symptoms, 

indicating loss of Lis1 in the heart is not the cause of the Lis1 KO phenotype. 

Thus my work suggests that Lis1 plays a vital role in autonomic neurons and 

disrupted axonal transport is the primary cause of the Lis1 KO phenotype.  

 Dynein has also been shown to interact with adenomatous polyposis coli 

(APC). This interaction is regulated by insulin signaling, specifically through 

phosphorylation by glycogen synthase kinase 3 (GSK3) (Gao et al., 2015; Gao et 

al., 2017). In wild-type (WT) cells, inhibition of GSK3 causes release of dynein 

from APC, leading to accumulation of dynein at the centrosome. In cells with the 

multiple intestinal neoplasia (MIN) mutation of the APC gene, GSK3 is unable to 

regulate the dynein-APC interaction. Using western blot analysis, I found that the 

insulin-signaling pathway remains functional in MIN cells. Since APC binds to 

microtubules, which are the tracks for dynein-dependent transport, I looked for 

changes in overall microtubule morphology and posttranslational modifications. 

No difference was observed in microtubule morphology, but there was less 

detyrosinated tubulin in MIN cells. However, this is unlikely to cause the 

observed phenotype, as dynein motility is decreased on detyrosinated 

microtubules (McKenney et al., 2016). Finally, using coimmunoprecipitation, I 

found that dynein interacts with the C-terminus of APC, which is absent in MIN 



www.manaraa.com

viii 

cells, and not the N-terminus. My work indicates that the absence of the C-

terminus of APC, and not alterations of the microtubule cytoskeleton or insulin-

signaling pathway, is responsible for the inability of GSK3 to regulate dynein in 

MIN cells.
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CHAPTER 1 

GENERAL INTRODUCTION 

1.1 CYTOPLASMIC DYNEIN 

Cytoplasmic dynein 1 (dynein) is a highly conserved minus-end directed 

microtubule motor that plays a role in a variety of cellular processes. The multi-

subunit holoenzyme is comprised of heavy chains (DHC), which contain the 

motor and microtubule-binding domains and intermediate chains (DIC), light 

intermediate chains (DLIC), and light chains (Tctex1, roadblock, and LC8), which 

serve to regulate dynein-cargo interactions (Vale, 2003). This assortment of 

subunits, along with other interacting proteins, allows the motor to carry out 

diverse cellular processes. 

Early work in budding yeast and filamentous fungi implicates dynein in 

nuclear migration and mitotic spindle orientation (Eshel et al., 1993; Li et al., 

1993; Plamann et al., 1994; Xiang et al., 1994). Dynein is also critical for mitotic 

spindle formation and orientation in mammalian cells (Vaisberg et al., 1993; 

O'Connell and Wang, 2000). Dynein also facilitates nuclear envelope breakdown 

and localizes to kinetochores during mitosis, where it plays a role in microtubule 

capture, chromosome segregation, and progression through the spindle 

assembly checkpoint (Pfarr et al., 1990; Steuer et al., 1990; Sharp et al., 2000; 
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Howell et al., 2001; Wojcik et al., 2001; Salina et al., 2002; Bader and Vaughan, 

2010). 

During neurodevelopment, dynein is also important for migration of 

neurons and progenitors. Dynein and another microtubule motor, kinesin 3, 

mediate interkinetic nuclear migration (INM) of radial glial progenitor cells in the 

developing mammalian cortex (Tsai et al., 2007; Tsai et al., 2010; Hu et al., 

2013). Newly formed neurons in the intermediate zone have a multipolar 

morphology, but soon transition to a bipolar morphology by extending one neurite 

toward the ventricle and another toward the cortical plate. This process is 

impeded by knockdown or mutation of dynein (Tsai et al., 2005). 

One of dynein’s most pertinent functions for this project is to mediate 

microtubule minus-end directed intracellular transport. In the axons of neurons, 

microtubules have a uniform “plus-end out” polarity, which means dynein is 

responsible for transport of cargoes from the axon terminal back toward the cell 

body – a process known as retrograde axonal transport (Baas et al., 1988; Vallee 

et al., 1989). The cargoes transported by dynein (and other motors) vary widely 

and include ribonucleoproteins (RNPs), membrane-bound vesicles, mitochondria, 

and cytoskeletal components. 

Since dynein has such a diverse array of cellular functions, its activity 

must be tightly regulated. This is done primarily via a combination of protein-

protein interactions, such as with Lis1, Ndel1, or APC, and posttranslational 

modifications, specifically phosphorylation of dynein and its regulators by protein 
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kinases, such as GSK3 and CDK5 (Allan, 2011; Gibbs et al., 2015). These 

regulatory mechanisms will be discussed in the following sections. 

 

1.2 THE ROLE OF LIS1 AND NDEL1 OUTSIDE OF AXONAL TRANSPORT 

In humans, haploinsufficiency of the Lis1 gene causes lissencephaly, a 

neurodevelopmental disorder characterized by a smooth cerebral cortex, 

cognitive and motor deficits, and progressively worsening seizures. Lis1 binds 

directly to DHC and regulates many dynein-dependent processes both during 

and after development (Sasaki et al., 2000; Smith et al., 2000; Tai et al., 2002). 

In fact, decreased Lis1 expression in lissencephaly patients impairs dynein-

dependent processes in mitosis and migration of neural progenitors, which has 

been implicated as the major mechanism underlying the disease (Sasaki et al., 

2000). Depletion of Lis1 alters mitotic spindle assembly and orientation, impeding 

proliferation of neural stem cells, leading to depletion of the stem cell population 

(Tsai et al., 2005; Wynshaw-Boris, 2007). Aberrant migration is another 

consequence of decreased Lis1 expression, which results in ectopic neuronal 

positioning, which could contribute to the epileptic seizures seen in lissencephaly 

patients (Hirotsune et al., 1998; Tsai et al., 2005; Wynshaw-Boris et al., 2010). 

Ndel1, a binding partner of Lis1, operates in a similar capacity during 

development through its interaction with DHC via its C-terminal domain, as well 

as DIC and Lis1 via independent binding sites on its N-terminal coiled-coil 

domain (Sasaki et al., 2000; Tai et al., 2002; Wang and Zheng, 2011; Zylkiewicz 

et al., 2011). This interaction with dynein is mediated by phosphorylation of Ndel1 
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by cyclin-dependent kinase 5 (CDK5) (Niethammer et al., 2000; Sasaki et al., 

2000). In fact, hypomorphic Ndel1 mutant mice (expressing ~20% of WT levels) 

displayed neuronal migration defects and blastocysts of Ndel1 null mice had cell 

proliferation defects causing embryonic lethality, similar to Lis1 mutant mice 

(Hirotsune et al., 1998; Cahana et al., 2003; Sasaki et al., 2005). Lis1 and Ndel1 

are crucial for these processes because they increase dynein force production, 

enabling transport of large loads, such as nuclei and chromosomes (McKenney 

et al., 2010). 

 

1.3 AXONAL TRANSPORT 

 As mentioned previously, dynein is the primary mediator of microtubule 

minus-end directed transport. Kinesins are a family of primarily plus-end directed 

microtubule motors (Vale et al., 1985; Vale, 2003). Since microtubules in axons 

have a uniform “plus-end out” orientation, dynein is responsible for transport of 

cargoes from the axon terminal or growth cone back toward the cell body 

(retrograde transport), while kinesins predominantly mediate transport of cargoes 

from the soma toward the end of the axon (anterograde transport) (Vale et al., 

1985; Baas et al., 1988; Vallee et al., 1989; Vale, 2003). 

 These motors are capable of transporting a wide variety of cargoes to 

carry out the diverse processes required to support the axon. Cytoskeletal 

components, such as neurofilaments and vimentin, are transported along axons 

to support their structure and growth (Lee and Cleveland, 1996; Shea and 

Flanagan, 2001; Shim et al., 2008). mRNAs are transported in axons as 
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ribonucleoproteins (RNPs) where they can be locally translated in response to 

certain stimuli, such as neurotrophin signaling or axon injury (Ben-Yaakov et al., 

2012; Gomes et al., 2014; Villarin et al., 2016). Mitochondrial transport is an 

essential process for sustain adequate energy levels for the axon, which may 

extend up to one meter in humans. Maintenance of mitochondria along the axon 

requires not only the transport of healthy mitochondria to regions of high energy 

demand, but also removal of damaged mitochondria through a process called 

mitophagy (Misgeld and Schwarz, 2017). Other membrane-bound organelles, 

such as endosomes, lysosomes, and autophagosomes are also transported 

within axons to recycle or degrade cellular components.  

 Due to the presence of three distinct, highly specialized cellular 

compartments (dendrites, cell body, and axons), motors must be spatially 

regulated to ensure transport of cargoes to the proper domain. One distinct 

region involved in sorting of cargoes to the correct compartment is the axon initial 

segment (AIS). Most organelles likely have both microtubule motors, as well as 

the actin-based motor, myosin, associated with them at any time. To facilitate 

directional movement of these cargoes, there must be a mechanism (or 

mechanisms) to coordinate the numerous motors attached. The uniform 

microtubule directionality in the axon allows sorting of axonal and 

somatodendritic cargoes through motor regulation. Axonal cargoes carried by 

plus-end directed kinesin motors to proceed through the AIS into the axon, while 

somatodendritic cargoes are turned away through mechanisms which engage 

the minus-end directed dynein motor. One such mechanism involves cyclin-
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dependent kinase 5 (CDK5)-dependent phosphorylation of Ndel1, which is stably 

bound to the AIS (Kuijpers et al., 2016; Klinman et al., 2017). This increases 

Ndel1 binding to dynein and recruits Lis1 to this complex to activate transport of 

these cargoes out of the AIS toward the cell body (Kuijpers et al., 2016) 

 Another possible mechanism of regulating directionality of cargoes 

involves a molecular “tug of war” between opposing motors, where activity of one 

type of motor influences the activity of another (Levi et al., 2006; Ally et al., 2009; 

Hendricks et al., 2010). An alternative mechanism involves the scaffold protein, 

JNK-interacting protein 1 (JIP1), and the dynein regulator, dynactin (Fu and 

Holzbaur, 2013). JIP1 binding to kinesin heavy chain (KHC) relieves 

autoinhibition of the motor. JIP1 also interacts with the dynactin subunit, 

p150Glued, which sequesters JIP1 from binding and activating KHC (Fu and 

Holzbaur, 2013). Phosphorylation of JIP1 by JNK acts as a switch to promote its 

interaction with KHC, stimulating anterograde transport of amyloid precursor 

protein-containing vesicles in axons (Fu and Holzbaur, 2013). 

Lis1 and Ndel1 regulate dynein activity in retrograde axonal transport. The 

mechanisms behind this are still under some scrutiny, but it is apparent that Lis1 

and Ndel1 are critical for proper transport of various cargoes. Previous research 

from our lab showed that CDK5 acts as a regulatory switch by phosphorylating 

Ndel1 and increasing its interaction with dynein, thereby increasing retrograde 

transport of Lysotracker labeled organelles (Pandey and Smith, 2011). 

Conversely, phosphorylation of dynein by glycogen synthase kinase 3 (GSK3) 

impairs Ndel1 binding, thus decreasing minus-end directed transport (Gao et al., 
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2015). Expression of a dominant-negative form of CDK5 or an Ndel1 mutant 

which cannot be phosphorylated by the kinase dramatically reduced transport. 

Additionally, knockdown of Lis1 or expression of Lis1 mutants that could not bind 

dynein or Ndel1 disrupted retrograde transport (Pandey and Smith, 2011). 

Others, however, have observed disruption of dynein-dependent transport of 

various organelles when CDK5 activity is increased by overexpression of the 

CDK5 activator, p25, which would increase Ndel1 binding to dynein (Klinman and 

Holzbaur, 2015). Likewise, there have been contradictory results regarding the 

role of Lis1 in the transport of mitochondria. Knockdown of Lis1 in ageing 

Drosophila wing neurons augmented mitochondrial transport, while knockdown of 

Lis1 or Ndel1 disrupted mitochondrial transport in cultured rat hippocampal 

neurons (Shao et al., 2013; Vagnoni et al., 2016).  

One explanation for the different effects observed is that regulation of 

dynein by Lis1 and Ndel1 is cargo-specific. For example, Lis1 and Ndel1 appear 

to play a crucial role in transport of large vesicles in axons, perhaps due to their 

ability to increase dynein force production (McKenney et al., 2011; Pandey and 

Smith, 2011). Another argument is that the type of regulation is dependent on the 

number of Lis1 molecules bound to a dynein motor. A single Lis1 protein binding 

to dynein appears to induce tighter binding to microtubules, perhaps conferring 

its ability to transport high-load cargoes, while binding of two Lis1 molecules 

produces weaker microtubule binding, allowing faster dynein-dependent 

transport (DeSantis et al., 2017). Additionally, Lis1’s effects on dynein motility 
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may depend on whether another regulatory protein complex, dynactin, is bound 

to the motor (Baumbach et al., 2017; Gutierrez et al., 2017). 

 Dynactin can also stimulate dynein-dependent processes, including 

nucleokinesis and organelle transport, directly via its interaction with DIC 

(Schroer, 2004). Additionally, dynactin can facilitate dynein’s interaction with 

cargoes via adaptor proteins, such as Bicaudal D homologue 2 (BICD2), BICD 

related-1 (BICDR1), and HOOK3 (Urnavicius et al., 2018). Interaction of dynactin 

with BICDR1 and HOOK3 can recruit two dynein motors to a single complex to 

increase force production and velocity (Urnavicius et al., 2018). 

 While all of the regulatory elements of axonal transport are not currently 

known, it is clear that precise control of motor activity and localization are critical 

to maintaining the integrity of the nervous system. 

1.4 LINK BETWEEN NEURODEGENERATIVE DISEASE AND AXONAL 

TRANSPORT 

 Due to the fundamental importance of intracellular transport, disruption of 

this process can have dire consequences, particularly in neurons, whose axons 

can extend over distances of up to 1m in humans. In fact, many 

neurodegenerative and later-onset neurological diseases have been linked to 

defective axonal transport. 

 For example, impaired retrograde transport of NGF and BDNF have been 

linked to Alzheimer’s and Huntington’s diseases, respectively. Endosomal 

trafficking and mitochondrial transport are commonly disrupted processes in a 

variety of degenerative diseases, such as Parkinson’s disease, upper motor 
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neuron diseases, Charcot-Marie-Tooth (CMT), and amyotrophic lateral sclerosis 

(ALS) (Hinckelmann et al., 2013; Millecamps and Julien, 2013). Interestingly, 

many of these defects are seen in patients with mutations in genes which are not 

directly related to axonal transport or microtubule motors. For this reason, it is not 

currently known whether disrupted transport is causative in the progression of the 

diseases, or merely a symptom due to defects in other processes (Hinckelmann 

et al., 2013; Millecamps and Julien, 2013). 

Mutations in the dynein motor itself, as well as direct regulators of dynein-

dependent transport, have also been linked to several later-onset neurological 

disorders. These mutations can affect various aspects of transport, including 

motor dimerization, processivity, and cargo binding. 

 Mutations in the dynein heavy chain gene (DYNC1H1) that cause spinal 

muscular atrophy with lower extremity predominance (SMALED) have been 

shown to disrupt long-distance transport, without affecting cargo binding (Harms 

et al., 2012; Hoang et al., 2017). Meanwhile, DYNC1H1 mutations found in 

patients with CMT type 2O (CMT2O) are located in the stem domain of the 

protein and impair homodimerization (Weedon et al., 2011). Two mouse models 

of ALS – Legs at odd angles (Loa) and Cramping 1 (Cra1) – also have 

DYNC1H1 mutations that are thought to prevent homodimerization (Hafezparast 

et al., 2003). The Loa mutation also affects dynein intermediate chain binding 

and transport speeds (Hafezparast et al., 2003). Additionally, mutations in the 

dynein regulator, dynactin, cause Perry syndrome, a late-onset neurological 

disorder whose symptoms include parkinsonism, weight loss, depression, and 
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hypoventilation often leading to insufficient respiration and death, or lower motor 

neuron disease (Farrer et al., 2009; Moore et al., 2009). These mutations are in 

the CAP-Gly domain of the p150glued subunit of dynactin, which facilitates 

microtubule binding and affects dynein function (Farrer et al., 2009; Moore et al., 

2009). 

 Interestingly, the mutations found in these diseases do not completely 

ablate the motor activity, but have a more subtle effect on its function. This could 

explain why their effects are seen later in life – complete disruption of motor 

activity would result in a devastating phenotype, but relatively minor alterations in 

function may lead to accumulation of damaged mitochondria, proteins, or other 

problematic cellular components over time. 

 

1.5 THE ROLE OF APC IN NEURONS 

Adenomatous polyposis coli (APC) is a tumor suppressor gene expressed 

in a wide variety of cell types. Mutations in APC are known to cause colorectal 

cancer in humans. It has also been shown to play an important role in the 

nervous system. APC is involved in Wnt signaling as part of the β-catenin 

destruction complex. It is also a microtubule plus-end binding protein, which 

enables it to regulate microtubule dynamics. These functions give rise to its role 

in regulating cell polarity and migration (Barth et al., 2008; Purro et al., 2008; 

Eom et al., 2014). These are particularly important processes in neurons, as they 

contain multiple compartments with distinct polarity and must migrate long 

distances in the developing brain.  
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APC also plays a role in synapse formation and axon growth. APC is 

involved in synapse formation and maturation by mediating PSD-95 and AMPA 

receptor clustering at the post-synapse (Shimomura et al., 2007). Additionally, 

deletion of APC impairs learning and memory and produces an autism-like 

phenotype in mice (Mohn et al., 2014). Deletion of APC also disrupts cytoskeletal 

organization in the axon and induces aberrant branching of cortical axons (Chen 

et al., 2011). It was recently discovered that APC can act as an RNA-binding 

protein and spatially regulate translation of mRNAs, including tubulin isoforms, in 

growth cones of extending axons (Preitner et al., 2014). This additional function 

may contribute to its role in axon growth. 

In addition to interacting with microtubules directly, APC has been shown 

to interact with microtubule motors. The localization of APC at the periphery of 

fibroblasts and in growth cones of neurons is regulated by kinesin motors (Ruane 

et al., 2016). Our lab also found that APC directly interacts with and regulates the 

motility of cytoplasmic dynein and mutations in APC abrogate this regulatory 

mechanism (Gao et al., 2017). I will discuss my contributions to these studies in 

Chapter 4. 

 

1.6 GOALS OF THE PROJECT 

 The overarching goal of the project is to determine how dynein-dependent 

transport is regulated, with an emphasis on axonal transport. Since axonal 

transport is disrupted in a variety of neurodegenerative diseases, understanding 

the mechanisms that influence this critical cellular process could provide new 
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avenues of research and targets for therapeutics for these diseases. Our 

hypothesis for these projects is that disruption of dynein-dependent axonal 

transport will produce signs of axon degeneration, which will impair neural 

function. By studying different pathways, using several techniques (e.g., genetic 

approaches, pharmacological manipulations, etc.), we hope to produce a more 

comprehensive model for how dynein-dependent transport is regulated and how 

dysregulation can lead to axonal pathology. 

 Additionally, one of the future directions for the lab is to identify the roles 

of these dynein regulatory pathways on axon regeneration following nerve injury. 

Chapter 2 discusses the role of spatial signaling after axon injury and during 

regeneration. While this chapter provides insight into this area of research, there 

are still many unanswered questions with regard to the role of dynein and its 

regulators during axon growth and regeneration.
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CHAPTER 2 

NEURONAL TRANSPORT AND SPATIAL SIGNALING 

MECHANISMS IN NEURAL REPAIR1 

2.1 INTRODUCTION 

Neurons form the circuits that control and coordinate all animal behavior. 

These circuits are vital for normal function of the brain, spinal cord, and 

peripheral nerves. Intercellular communication generated by transfer of electrical 

activity be-tween neurons and from neurons to target tissues is needed for every 

movement, sensation, and thought produced. A typical neuron is composed of 

three parts: a cell body, several dendrites, and an axon. The dendrites traverse 

short distances (≤ 2 mm) and bring activity to the cell body, while the axons are 

much longer and transmit activity away from the cell body. A neuron uses 

membrane depolarization to rapidly convey the information that is encoded by 

neural activity, from ‘post-synaptic’ sites in dendrites to the ‘presynaptic’ sites at 

the ‘termini’ of axons (i.e., intracellular communication). Arrival of such an ‘action 

potential’ at the axon terminus triggers release of neurotransmitters to propagate 

information across neural circuits or directly to the neuron’s target (i.e., inter-

cellular communication). The human neural circuits that connect motor cortex to 

                                                           
1 Kalinski AL*, Hines TJ*, Smith DS, and Twiss JL. Neuronal transport and spatial signaling mechanisms in 
neural repair.  Encylopedia of Cell Biology, Elsevier Press, Eds. Bradshaw RA and Stahl P. Reprinted here 
with permission from the publisher. *indicates equal contributions 
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spinal cord to muscle cover a distance approaching 2 m in some individuals. It is 

the axons of the motor cortex neuron and the spinal motor neuron that cover 

these long distances in the spinal cord and peripheral nerves, respectively. 

Disruption of axons through injury or disease blocks normal transmission of this 

neural activity and these long axonal processes are particularly vulnerable to 

damage. 

While propagation of action potentials across these distances occurs on a 

millisecond time frame, neurons also use slower forms of intracellular 

communication by conveying organelles, protein complexes, and RNA–protein 

complexes anterogradely and retrogradely in axons and dendrites. Axonal 

transport has been particularly well-studied, and has historic-ally been separated 

into fast and slow components based on the speed of labeled proteins moving 

within axons. The fast component travels around 100 mm day-1, while the slow 

component travels around 1 mm day-1 (Shah and Cleveland, 2002). The cargos 

that move in the fast component are important for the growing tips of developing 

axons (‘growth cones’) and for the proper function of mature synapses. These 

include organelles, membranes, proteins, and RNAs. Fast axonal transport also 

conveys signals to the cell body of the neuron that can regulate gene expression. 

The slow component of axonal transport ferries cytoskeletal polymers and other 

soluble proteins for maintenance of axon integrity (Shah and Cleveland, 2002). 

Movement of organelles and complexes within axons and dendrites is essential 

for neural function and plays key roles in neural repair. 
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‘Molecular motors’ or ‘motor proteins’ play the role of pack animals and 

messenger pigeons to move cargos to and from the neuron’s cell body along 

axons and dendrites. There are several types of motors but all share certain 

attributes, being multisubunit protein complexes that harness the energy of ATP 

hydrolysis to move along ‘cytoskeleton’ tracks in axons and dendrites. The rates 

at which motors ferry cargo depends on a number of criteria, but in vitro speeds 

of individual mammalian motors and also membrane bound vesicles in axons 

have been clocked at up to 4 mm s-1. This speed is probably not maintained 

consistently, as transport cargos are frequently observed to pause and even 

reverse directions within axons and dendrites. Nonetheless, the movement of 

cellular components over very long distances in relatively short amounts of time 

is a rather herculean task that requires a significant expenditure of energy. 

Regulation of motor protein motility, cargo composition, and the organization of 

the cytoskeleton tracks within neurons can dramatically influence neuronal 

function, particularly during the repair of neural connectivity after injury. Motor-

dependent transport mechanisms are also prime targets for dysregulation in 

disease processes that affect the nervous system. 

This chapter will cover the contributions of this subcellular trafficking to 

neural repair, focusing on the axon. During development, axon growth is 

characterized by a rapid elongation phase until targets are reached. At this point 

an alternate mode of arborizing growth allows axons to contact target cells and 

initiate synaptogenesis. This short-distance sprouting of axons may also underlie 

a presynaptic contribution to synaptic plasticity. It should be noted that 
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development and regeneration of axonal processes share many common 

mediators, so much of this chapter will also be relevant to events in 

developmental growth. Although we focus on the repair of axons because of their 

fundamental importance in long-range communication in the nervous system, 

many of the mechanisms outlined here are also relevant for repair of dendritic 

processes.  

 

2.2 CONSTITUENTS FOR INTRACELLULAR COMMUNICATION AND 

TRAFFICKING IN NEURONS 

2.2.1 THE NEURONAL CYTOSKELETON PROVIDES STRUCTURE, HIGHWAYS 

FOR COMMUNICATION, AND GROWTH FUNCTIONS 

The three components of the neuronal cytoskeleton, micro-filaments, 

intermediate filaments, and microtubules, provide structural integrity for mature 

axons and dendrites. Their continued maintenance throughout the life of the 

animal supports normal axonal and dendritic function. During developmental and 

regenerative events the cytoskeleton itself is highly dynamic; polymerization and 

depolymerization of microtubules and microfilaments in the distal ends of axons 

(and dendrites) contributes to both growth and pathfinding for axons and 

dendrites (Lowery and Van Vactor, 2009). Posttranslational modifications to the 

cytoskeleton and associated proteins can contribute to neuronal cytoskeletal 

dynamics – for example, cyclin-dependent kinase 5 (CDK5) impacts all three 

components of the neuronal cytoskeleton (Smith, 2003). Motor proteins can 

contribute to cytoskeletal dynamics by moving short segments of cytoskeletal 
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polymers or oligomers as cargo (Shah and Cleveland, 2002). This is particularly 

relevant during axon growth and arborization, but even after synapses are 

formed, transport of cytoskeletal components is likely to be important for 

maintenance of axons. The bulk of this movement appears to occur much more 

slowly than the speeds typically associated with fast axonal transport. However, 

this slow movement (and perhaps all of the slow component of axon transport) is 

thought to be driven by ‘fast’ motors that move the cargo intermittently (Li et al., 

2012). 

Microfilaments 

Microfilaments are composed of two strands of actin monomers twisted 

into helical filaments that have intrinsic polarity. All cells, including neurons, have 

a microfilament-rich, mesh-like network on the cytoplasmic side of the plasma 

membrane. This ‘cortical actin’ has been proposed to provide a tethering platform 

for non-translocating but active motors, allowing them to function in unison to 

move small microtubules and attached cellular components within axons and 

dendrites (Myers et al., 2006). Polymerization and depolymerization of 

microfilaments at the distal end of growing axons and along the axon shaft, 

respectively, also play key roles in axon growth and branching. A large number of 

proteins have been identified that regulate actin dynamics and the spatial 

organization of actin filaments in growth cones (Lowery and Van Vactor, 2009). 

Spectrin is another filamentous protein that is concentrated beneath the 

plasma membrane, providing a cross-link for the actin cytoskeleton and anchor 

for complexes of signaling and structural proteins, including membrane-linked 
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protein complexes (Machnicka et al., 2014). Different spectrin isoforms are 

concentrated in subdomains of the axon (e.g., axon initial segment, nodes of 

Ranvier) that are needed for neural function (Eshed-Eisenbach and Peles, 2013). 

Axonal spectrins can be rapidly proteolyzed following axonal injury (Buki et al., 

1999), so reconstruction of these axonal domains and repopulating the axon with 

spectrin is a key event in transitioning a regrown axon into a functional axon. 

Intermediate filaments 

Neuronal intermediate filaments do not provide tracks for motors, but 

these proteins have important roles in both axon function and growth. Neuron-

specific intermediate filaments provide structural support for growing axons, and 

accumulation of one class of filaments, the neurofilaments, dictates the final 

caliber of an individual axon (Lee and Cleveland, 1996). The pathophysiology of 

some human diseases is accompanied by alterations in neurofilament deposition, 

including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s 

disease, and several neuropathies (Perrot and Eyer, 2009). Posttranslational 

modification of the poly-peptides that make up neurofilaments contributes to their 

axonal delivery (Szaro and Strong, 2010). The intermittent ‘slow component’ of 

microtubule-based transport of neurofilaments may contribute to the precise 

deposition of intermediate filaments along the axon (Shea and Lee, 2013). High 

levels of neurofilament mRNA and protein levels are typically associated with 

more mature neurons. In fact, synthesis of neurofilaments protein falls after 

axotomy of peripheral nerves and stays relatively lower during regeneration 

(Hoffman and Cleveland, 1988). In some cases phosphorylated neuro-filaments 
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accumulate in the soma of regenerating axons, suggesting that transport into 

growing axons is reduced (Goldstein et al., 1987). 

Another type of intermediate filament protein in neurons, peripherin, is 

expressed primarily in peripheral neurons. In contrast to neurofilament 

expression, peripherin expression increases during regenerative growth, falling 

back to basal levels as axons near their target tissues (Reid et al., 2010). The 

axonal inclusions seen in some ALS model mice have been shown to include 

peripherin, and overexpression of the ALS-linked protein TDP43 has been shown 

to cause a pro-longed increase in peripherin expression after peripheral nerve 

injury (Swarup et al., 2012). This implies that the ALS model has an altered 

course of neural repair. 

Microtubules 

Microtubules are the largest of the cytoskeletal polymers, and like 

microfilaments, have intrinsic polarity and the potential to be highly dynamic. 

Each microtubule is made of 13 parallel protofilaments, which are polymers of α- 

and β-tubulin heterodimers (Prokop, 2013). The organization of the heterodimers 

imparts the polarity to microtubules, with the α-subunit nearer to the ‘plus end’ 

and the β-subunit is nearer to the ‘minus end.’ In axons, microtubules have 

uniform polarity with distal plus ends oriented away from the cell body, but 

dendrites have mixed microtubule polarity (Baas and Lin, 2011). In motor-based 

transport this polarity is important because motor proteins typically prefer to 

move in either a plus-end or minus-end direction (Figure 2.1A). Therefore, the 
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polarity of microtubules creates a situation in which motors exhibit unidirectional 

movement in axons and bidirectional movement in dendrites. 

Microtubules shrink and grow due to dimer addition and loss at their plus 

ends in a process called dynamic instability (Mitchison and Kirschner, 1984). 

Plus ends are the most dynamic, and have a cadre of associated proteins, known 

as ‘plus end tracking proteins’ (+TIPs), that regulate their behavior (Schuyler and 

Pellman, 2001). Growth and shrinkage occur less frequently at minus ends, in 

part because minus-end binding proteins can both protect against microtubule 

depolymerization as well as prevent addition of tubulin dimers (Goodwin and 

Vale, 2010). With neural injury, the microtubules and neurofilaments are 

depolymerized in the axon near the injury site on the proximal side (Figure 2.1B). 

The importance of microtubules in axon growth has been known for 

decades. The expression of tubulins increases during regeneration, recapitulating 

developmental expression levels (Hoffman and Cleveland, 1988). Microtubule 

polymerization is a critical and highly regulated process in axon growth; and 

drugs that inhibit polymerization can block axon growth in cultured neurons 

(Tanaka et al., 1995). Interestingly, stabilization of microtubules with taxol can 

augment spinal cord regeneration (Hellal et al., 2011). Microtubule acetylation 

has been linked to microtubule dynamics and to regeneration (see below) (Cho 

et al., 2013). Microtubule-associated proteins (MAPs) also modify microtubule 

structure (e.g., ‘bundling’ of microtubules along the axon shaft), microtubule 

stability, and motor protein processivity (Hirokawa, 1994). 
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2.2.2 THE GROWTH CONE IS UNIQUELY SUITED FOR ITS JOB 

The growing ends of developing and regenerating axons form a 

specialized structure called the ‘growth cone’ (Figure 2.1C). The shape and 

behavior of the growth cone is dictated by both extrinsic and intrinsic factors 

(Gomez and Letourneau, 2014). Examples of extrinsic factors are substrate 

molecules in the extracellular milieu or matrix (ECM) present along the growth 

trajectory, and molecules secreted locally into the environment by neighboring 

cells. Intrinsic factors include cytoskeletal dynamics that are often regulated by 

proteins within the growth cone like the Rho, Rac, and CD42 small GTPases, as 

well as the spatial distribution of receptors for sensing environmental cues. 

Generation of a growth cone after an axon is injured is generally thought to be 

essential for regenerative growth. One of the initial events in establishing a 

growth cone after injury is the entrance of calcium into the damaged axon – as 

outlined in subsequent sections, this triggers a number of changes that not only 

allow this important structure to form, but also facilitates signaling to the neuronal 

cell body (Bradke et al., 2012). 

While growth cones can vary greatly in shape and behavior, a typical 

advancing growth cone is composed of three major domains: central (C-), 

transition (T-), and peripheral (P-) domains (Gomez and Letourneau, 2014). The 

C-domain is made up of stable microtubule bundles that come from the axon 

shaft. These microtubules tend to be acetylated in the axon shaft and as 

microtubules enter the growth cone, tyrosination becomes the prominent 

posttranslational modification on the tubulins (Figure 2.1C). Acetylated tubulin is 
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associated with stable polymers, while tyrosinated tubulin is associated with 

more dynamic polymers (Janke, 2014). The C-domain typically contains the more 

dynamic microtubules that can extend linearly in sync with the advancing edge of 

the growth cone. However, microtubules are responsive to environmental cues, 

and can shrink back or become curved in order to pause advancement or to 

reorient direction of growth (Lowery and Van Vactor, 2009). The P-domain at the 

very leading edge of the growth cone is composed of actin-based projections 

called lamellipodia and filopodia. Microfilaments in lamellipodia form a dynamic 

mesh, with new filaments being added to growing edge and old filaments being 

broken down at the back of the mesh near the C-domain. Force-generating 

myosin motors (see below) control the contractility of this meshwork (Medeiros et 

al., 2006). The filopodia, are finger-like projections outward from lamellipodia that 

extend and retract to sample their environment. They contain dynamic bundles of 

actin filaments, which are thought to form through the concerted action of 

myosin-driven ‘retrograde flow’ of the actin mesh in lamellipodia and the 

extension of actin polymers in the filopodia (Medeiros et al., 2006). 

The dynamic nature of the cytoskeleton in growth cones is what allows 

these structures to respond to environmental cues, and growth cones ultimately 

must transition into synaptic endings or other types of functional axon termini. 

When the growth cone adheres to a substrate such as laminin, the actin 

cytoskeleton becomes anchored to receptors, preventing retrograde movement 

of actin, which causes the filopodia of the growth cone to extend or protrude via 

distal actin polymerization (Mitchison and Kirschner, 1988). As this happens, 
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myosin motors create tension between F-actin filaments and an F-actin arc at the 

base of the growth cone closest to the axon shaft. This allows microtubules of the 

C-domain to move forward, leading to an engorged growth cone; after this, the F-

actin arc depolymerizes and the membrane collapses around the stable 

microtubule bundles, consolidating this region into an extension of the axon shaft 

(Lowery and Van Vactor, 2009). It should be noted that localized synthesis of β-

actin protein and actin-interacting proteins in growth cones may also contribute to 

actin dynamics in the growth cone, as well as along the axon shaft where 

collateral branches form (Zhang et al., 1999; Spillane et al., 2013). Motor protein 

regulators (e.g., lissencephaly protein (Lis1) and nuclear distribution E-like 1 

(Ndel1), see below) are prominent in growth cones of regenerating axons in 

culture (Niethammer et al., 2000; Smith et al., 2000), and can play an active role 

in promoting growth cone motility. 

2.2.3 MOLECULAR MOTORS FERRY CARGO TO AND FROM AXONS AND 

PROVIDE FORCE GENERATION FOR AXON GROWTH 

Molecular motors transport of a wide range of cargos in axons including 

organelles, vesicles, mRNA, and signaling molecules. The mRNAs move as 

RNA–protein complexes termed ‘ribonucleoproteins’ (RNPs) (Gomes et al., 

2014). Cargo may be deposited along axons, or trafficked anterogradely to 

synapses and growth cones or retrogradely back to the cell body. Transport 

along microtubules is carried out by kinesins, which for the most part are plus-

end directed, and cytoplasmic dynein, which is minus-end directed (Hirokawa et 

al., 2010). Cytoplasmic dynein also has the capacity to become tethered to the 
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cortical actin cytoskeleton within axons and growth cones. The force generating 

heads that project into the axon away from the cortical actin are then able to 

‘kick’ short microtubule segments, causing them to move with their plus-ends 

leading (Mazel et al., 2014). In addition to microtubule motors, axons contain 

myosin motors that ferry cargo on microfilament tracks. While these three 

classes of motors share common features, including motor domains that require 

ATP, they are also quite distinct with respect to molecular organization as well as 

motility regulatory mechanisms. 

Kinesin 

There are 14 classes of kinesin superfamily proteins organized in part by 

where the motor domain is located within the polypeptide (Hirokawa et al., 2009). 

‘Conventional’ kinesins in the Kinesin-1 group are heterotetramers. Two ‘heavy 

chains’ (kinesin heavy chain, KHC) form a dimer with globular head domains that 

interact with microtubules and undergo force-producing conformational changes 

in response to ATP binding and hydrolysis. KHC stalk regions contain the 

dimerization domains, while the C-terminal tails interact with ‘light chains’ (kinesin 

light chain, KLC) that confer cargo binding (Marx et al., 2006). Though the motor 

domains are well conserved, substantial variability in other parts of the 

heteromer, including KLCs, can confer cargo selectivity. Kinesins move a variety 

of cargo toward axon termini, so they are critical for maintenance of mature 

axons and synapses, as well as for delivery of construction materials, receptors, 

adhesion proteins, and membranes to growing axons (Figures 2.1(a) and 1(b)). 

Different kinesins in this large superfamily are responsible for anterograde 
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transport of specific cargo types within axons. Some of the specificity is likely 

derived from distinct heavy chains, but cargo-specific transport by the same 

heavy chain can be modulated by associated light chains (Hirokawa et al., 2009). 

Dynein 

Although a few kinesins (e.g., KIFC2) may be capable of minus end-

directed transport (Hirokawa et al., 2009), the pre-dominant minus end-directed 

motor in axons is cytoplasmic dynein (Figures 2.1A and B). This huge protein 

complex contains 12–14 subunits and has 2 identical heavy chains (dynein 

heavy chain, DHC) that form a dimer (Vale, 2003). The large ring-shaped motor 

domains at one end of DHC are ATPases, and are the force-generating 

component of the protein complex. A stalk extending from each DHC motor 

domain interacts with microtubules. DHC’s stem interacts with an array of other 

‘chains.’ These include two intermediate chains, 2–3 light intermediate chains 

and 3 distinct light chains. It is generally believed that the accessory subunits 

bind to adaptors that confer cargo specificity and/or control dynein processivity 

(Allan, 2011). The cytoplasmic dynein holoenzyme is fairly uniform in subunit 

composition. However, multiple genes encode related but distinct isoforms of 

each accessory subunit. Moreover, alternative splicing and post-translational 

modifications can alter subunit composition to optimize dynein motors for 

different tasks (Pfister et al., 1996). Because axonal dynein moves retrogradely 

toward the cell body, it is important for molecular communication between axon 

endings and the nucleus. In intact axons, dynein carries information related to 
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synapses and target tissues, and convey signals that prevent continued axon 

elongation after developmental growth has ceased (Smith and Skene, 1997). 

Myosin 

Myosin is a force-generating ATPase that underlies muscle contraction. 

The classic muscle myosin remains tethered in place and brings about muscle 

contraction by exerting tugging forces on actin filaments. Some myosins in 

neurons also function by exerting forces on the subcortical actin network (Figure 

2.1C) – these are particularly prominent in regulation of growth cone dynamics 

needed for development and re-generation (Lowery and Van Vactor, 2009). 

Other members of the myosin superfamily are processive and can ferry cargo, 

using microfilaments as transport tracks. Some myosins (e.g., myosin Va) are 

plus-end directed, and others (e.g., myosin VI) are minus-end directed (Kneussel 

and Wagner, 2013). Myosin transport is typically thought to occur over shorter 

distances than the long-range axonal transport associated with microtubule 

motors (i.e., at branch points, in growth cones, in synapses, etc.). 

Regulation of motor proteins – Activation, inhibition, and cargo selectivity 

Much of what we know about motor regulation has come from in vitro 

studies with purified proteins or cultured cells. However, studies in neuronal 

cultures suggest that these mechanisms are likely relevant to nerve repair. 

Because of their force-generating capacities, their plethora of cargos and the 

many cellular processes influenced by motors, a strictly enforced regulatory 

network must be in place to coordinate motor behaviors and modulate their 

behaviors in response to environmental cues and intrinsic cues. At the most 
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basic level, ATP must be in good supply for all motors to function properly. 

Perhaps intuitively, mitochondrial ATP was shown to be the source of ATP for 

fast axon transport of mitochondria (Zala et al., 2013). However, the source of 

ATP for transport of some vesicular cargos appears to be from glycolytic 

machinery directly associated with the vesicle (Zala et al., 2013). Thus, the cargo 

itself can impact activity of the motor protein carrying it, and there is a growing 

understanding that complexes of motor proteins, scaffolds, and regulatory 

proteins can modulate motor processivity and force generation. The selection of 

a motor’s cargo is in part regulated by cargo adaptors, proteins that bind to both 

the motors and to a specific type of cargo (Fu and Holzbaur, 2013). An 

interesting new development is that mammalian cytoplasmic dynein is incapable 

of moving along microtubules in vitro in the absence of either cargo or cargo 

adaptor proteins (McKenney et al., 2014; Schlager et al., 2014). It remains to be 

determined if this is also the case within the confines of the axon shaft. 

Knowledge of motor protein regulation has been advanced by studies of 

neurological disorders. For example, mutant forms of huntingtin (HTT) protein 

that cause Huntington's disease form aggregates in axons and dendrites that can 

block transport by motors (Lee et al., 2004). Wild-type HTT can bind directly to 

dynein intermediate chain (DIC) subunits (Caviston et al., 2007), while an HTT 

binding partner HTT-associated protein 1 (HAP1) interacts with KLC (McGuire et 

al., 2006). Moreover, HTT is involved in linking the glycolytic machinery to cargo 

vesicles to provide a ready source of ATP for fast axonal transport (Zala et al., 

2013). While pathogenic HTT remains capable of interacting with motor 
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complexes, it reduces motor association with microtubules through a c-Jun N-

terminal kinase 3 (JNK3)-mediated phosphorylation of kinesin-1 (Morfini et al., 

2009). 

Most organelles have all three classes of motors associated with them, 

usually more than one of each kind of motor. Interactions between motors may 

occur via scaffolding systems (Fu and Holzbaur, 2013). There is growing 

evidence that motors of one class can affect activity of other classes of motors 

(Levi et al., 2006; Ally et al., 2009). While many of these interactions have been 

observed, how functions are coordinated to regulate cargo movement in the 

same axons has not been extensively studied. The precise trafficking of an 

individual cargo likely involves regulation of the stoichiometry of motor 

association, a tug of war between opposing motors of all three classes, the 

proximity of transport tracks, as well as posttranslational modification of proteins 

and cargos (Kardon and Vale, 2009; Fu and Holzbaur, 2013). Each of these 

mechanisms is operant in the mature as well as injured and regenerating axon. 

One known molecular control mechanism involves the JNK-interacting protein 1 

(JIP1) that acts as a scaffold protein that binds to both KHC and the dynein 

activator, dynactin (Fu and Holzbaur, 2013). JIP1 binding to KHC relieves an 

intramolecular autoinhibition of kinesin motor activity. The dynactin subunit 

p150Glued competes with KHC for binding to JIP1 so that KHC is inactive when 

JIP1 is bound to p150Glued. Kinesin disinhibition and dynactin binding by JIP1 is 

regulated by JNK-dependent phosphorylation, which can lead to directional 

changes in movement of amyloid precursor protein-containing vesicles in axons 
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(Fu and Holzbaur, 2013). JIP1 is also responsible for directional selectivity of 

autophagosomes in axons. Autophagosomes are retrogradely transported by 

dynein, and are presumed important for axonal maintenance and growth. Dual 

mechanisms appear to prevent activation of kinesin on these organelles (Fu et 

al., 2014). JIP associates with autophagosomes through the adaptor, 

microtubule-associated protein light chain 3 (LC3), and LC3 prevents JIP binding 

to KHC. 

Other proteins can bind directly to motors and regulate force generation 

and/or processivity in vitro and also impact axon transport in cultured cells. For 

example, loss of Lis1 protein reduces retrograde transport of acidic vesicles and 

Lis1 overexpression increases speed and run lengths of retrogradely moving 

vesicles in axons (Pandey and Smith, 2011). Lis1 seems to function with dynein 

to promote microtubule advance during growth cone remodeling and fast axon 

growth (Grabham et al., 2007). During embryogenesis, Lis1 contributes to 

neuronal migration (Reiner and Sapir, 2013), and it interacts with two paralogous 

dynein-binding proteins Ndel1 and Nde1 (Bradshaw et al., 2013). Ndel1/Nde1 

also serves as a platform for modulation of motor activity by posttranslational 

modification. Ndel1/Nde1 strengthens the Lis1 association with dynein and 

increases force production by promoting cooperation between multiple dynein 

motors (McKenney et al., 2010). Interestingly, the neuronally enriched kinase 

Cdk5, phosphorylates Ndel1/Nde1 (Niethammer et al., 2000). Phosphorylation of 

Ndel1 by Cdk5 is important for dynein-dependent organelle transport in growing 

axons extended by adult sensory neurons in culture (Pandey and Smith, 2011). 
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Recent evidence suggests that Cdk5 is an important regulator of membrane 

vesicle dynamics in growth cones (Hsiao et al., 2014; Tojima et al., 2014). Other 

kinases that contribute to regulation of axonal transport have also been observed 

to impact regeneration. For example, glycogen synthase kinase 3 (GSK-3) exerts 

a negative influence on axon transport in squid and fly axons (Morfini et al., 

2002). GSK-3 has shown varying effects on axon regeneration, but recent work 

indicates that sustained activation of GSK-3 supports regeneration of axons in 

peripheral nerve (Gobrecht et al., 2014). Clearly, the interplay between signals 

regulating axon transport and those regulating axon growth is complex, and just 

beginning to be understood. 

How extracellular stimuli regulate motor proteins is also not well 

understood, but some pathways are beginning to emerge. For example, 

activation of semaphorin receptors along growing axons stimulates both 

anterograde and retrograde movement of axonal vesicles (Li et al., 2004). 

Semaphorin stimulation of distal axons shifts α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptor subunit localization to dendrites through 

a coordinated retrograde signaling in axons and subsequent anterograde 

transport in dendrites (Yamashita et al., 2014). Neurotrophins also impact 

transport. These ligands increase endosome binding to dynein through DIC 

phosphorylation, thereby stimulating retrograde transport (Mitchell et al., 2012). 

Interestingly, neurotrophin receptors (Trks) are endocytosed in axons along with 

their ligands and can be retrogradely transported as a ‘signaling endosome’ that 

carries downstream effector kinases to the cell body (Schmieg et al., 2014). 
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During development, many neuronal populations compete for binding to target-

derived neurotrophins and other trophic agents. The neurons that do not secure 

an appropriate source of trophic support are eliminated through naturally 

occurring cell death. Culture preparations in which the neurons’ cell body and 

axons are compartmentalized have shown qualitative differences in the response 

to neurotrophic stimulation of distal axons compared to the cell body (Campenot 

and MacInnis, 2004). This suggests that the signaling endosome conveys a 

signal different from Trk receptors endocytosed along the cell body. 

Activation of Trk receptors along the axon has been shown to modulate 

transport of RNPs into axons, with accumulation and translation of mRNAs 

adjacent to the trophic stimulus along axons (Willis et al., 2007). Target-derived 

nerve growth factor (NGF) in sympathetic neurons was recently shown to 

coordinate transcriptional responses in the cell body with delivery of mRNA 

encoding a survival promoting protein, B-cell lymphoma w (Bclw), to the axons 

(Cosker et al., 2013). Given that peripheral nervous system (PNS) injury results 

in increased expression of neurotrophins and other trophic factors by Schwann 

cells in the severed nerve stump (Funakoshi et al., 1993), it is intriguing to 

hypothesize that signaling endosomes moving retrogradely to the cell body would 

be used to coordinate anterograde delivery of macromolecules to the 

regenerating axons. The cargos that motor proteins deliver into axons obviously 

play a role growth and regeneration. The axon needs new cytoskeleton and 

membrane components to grow, as the severed segment of the axon distal to 

injury site undergoes Wallerian degeneration in mammals (see below). It was 



www.manaraa.com

32 

also recently recognized that protein products of axonally transported mRNAs 

support regeneration in the PNS (Donnelly et al., 2013), and there is some 

evidence that this may occur after spinal cord injury as well (Willis et al., 2011). 

2.3 NEURAL REPAIR MECHANISMS 

2.3.1 INJURY CHANGES AXON STRUCTURE AND AXONAL TRANSPORT TO 

INITIATE A REGENERATION PROGRAM 

With damage and severing of an axon, the segment distal to the site of injury 

(i.e., the portion no longer connected to the cell body) is actively degraded 

through Wallerian degeneration. In the portion proximal to the site of injury, influx 

of Ca2+ from extracellular spaces promotes membrane sealing and locally 

activates proteases (Bradke et al., 2012). Proteases degrade axonal proteins 

including cytoskeletal elements, and this is necessary for the initiation of axonal 

growth (Ziv and Spira, 1997). The increase in axoplasmic Ca2+ also triggers 

retrograde signaling through transport mechanisms (Rishal and Fainzilber, 2010). 

This shift in retrograde transport ultimately helps to turn on expression of genes 

that support growth (regeneration-associated genes (RAGs)) and turn off 

expression of genes associated more with mature neuronal functions (Rishal and 

Fainzilber, 2010). For example, axotomy in the PNS increases the expression of 

growth-associated protein-43 (GAP-43) and Tα1-tubulin, but decreases 

expression of neurofilaments. Injury to the mammalian brain or spinal cord, in 

contrast to peripheral nerves, often does not activate expression of RAGs, and 

this may in part, underlie the reduced growth capacity of mammalian central 

nervous system (CNS) neurons after injury (Hoffman, 2010). Many strategies to 
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increase axon regeneration after central injuries have focused on altering the 

‘intrinsic growth capacity’ of CNS neurons through changing gene expression 

programs (Mar et al., 2014). ECM glycoproteins and glial-derived proteins in the 

injured brain and spinal cord also actively block axon growth, and over-coming 

these ‘roadblocks’ is often a complimentary strategy to support CNS neural repair 

(Geoffroy and Zheng, 2014). 

Some of the mechanisms that underlie the shift in retrograde axonal 

transport are known. Axonal JNK3 is locally activated after injury, with a resulting 

increased association of a complex of JNK-interacting proteins 3 (JIP3) and 

activated JNK3 with the p150Glued subunit of dynactin, and increased retrograde 

transport of activated JNK3 (Cavalli et al., 2005). This leads to activation of c-Jun 

in the neuronal cell body that presumably supports expression of genes needed 

for regeneration (Ruff et al., 2012). Interestingly, JIP3 binding to KHC can also 

increase kinesin motility (Sun et al., 2011). It is not clear whether the JIP1-

dependent retrograde transport of autophagosomes mentioned above 

contributes to neural repair; however, it is intriguing that both JIP1 and JIP3 can 

coordinate anterograde and retrograde transport (Fu and Holzbaur, 2014). This 

provides a powerful mechanism to coordinate transport to meet physiological 

needs of the neuron and potentially to recycle proteins between axons and cell 

body. 

Calcium influx coordinates the injury response 

The influx of Ca2+ into injured axons also triggers translation of locally 

stored mRNAs (Perry and Fainzilber, 2014). These mRNAs are transported into 
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axons as RNPs and it remains unclear exactly how Ca2+ influx activates 

translation locally in axons, but it likely includes a commensurate release of Ca2+ 

stores from sites in axons (Vuppalanchi et al., 2012). Axonal mRNAs known to 

be translated by increased axoplasmic (Ca2+) include Importin β1, Ran specific 

binding protein 1 (RanBP1), and vimentin (Gomes et al., 2014). These encode 

proteins that contribute to a retrograde injury signal in a complex highly 

orchestrated process (Rishal and Fainzilber, 2010). The newly translated 

Importin β1 in axons heterodimerizes with Importin α3 (Hanz et al., 2003). 

Localized synthesis of RanBP1 facilitates this by releasing α3 from an 

anterograde transport complex (Yudin et al., 2008)). Interaction of the Importin 

β1/α3 complex with dynein is needed for the transport of proteins containing 

nuclear localization signal (NLS) to the nucleus. The cargo of the dynein-Importin 

β1/α3 complex includes other proteins that are locally synthesized with injury 

(e.g., signal transducer and activator of transcription 3α, Stat3α) as well as 

proteins that are locally activated through injury-induced posttranslational 

modifications (e.g., extracellular-regulated kinase, Erk 1/2) (Perlson et al., 2005; 

Ben-Yaakov et al., 2012). Vimentin has been considered as a glial intermediate 

filament protein in the nervous system, but vimentin can be expressed in 

neurons, and its mRNA has been shown to localize to axons (Willis et al., 2007). 

Curiously, proteolytic cleavage of vimentin in injured axons generates a 'scaffold 

peptide' for activated Erk 1/2, a mitogen-activated protein kinase (MAPK), to bind 

to Importin β1/α3 dimer. This kinase is transported to the cell body with dynein, 

where it activates Elk1 (and possibly other) transcription factors (Perlson et al., 
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2005). It is likely that such a posttranscriptional mechanism is shared with other 

physiological responses of axons, since neurodegenerative stimuli, neuronal 

survival promoting stimuli, and a neurotropic virus are now recognized to couple 

events in the distal axons to cell body responses through translation of axonal 

mRNAs (Cox et al., 2008; Cosker et al., 2013; Koyuncu et al., 2013; Baleriola et 

al., 2014). These and other studies indicate that axonal injury induces a 

localized, integrated response to shift retrograde transport toward cargos that 

assist in mounting a regenerative response. The full extent of these cargos has 

yet to be determined. 

Calcium influx transforms the injured axon to support regenerative growth 

Much of what we know about axonal transport and localized growth 

mechanisms have been derived from studies in cultured neurons, where events 

can be spatially and temporally monitored with high precision. Neurons cultured 

from invertebrate organisms have provided a platform for visualizing cytoskeletal 

dynamics in growing and injured axons. For example, the initial studies on Ca2+ 

signaling after axonal injury resulted from work in Aplysia neurons (Ambron and 

Walters, 1996). The Ca2+ gradient that forms in these axons after injury occurs in 

both the proximal (intact) and distal (severed) segments of the injured axon, but 

only the proximal end undergoes regeneration (Ziv and Spira, 1997). The Ca2+ 

dependent events including membrane sealing and cytoskeletal restructuring 

controlled by calcium-activated calpain, syntaxin, synaptotagmin, and 

synaptobrevin are critical for neural repair (Bradke et al., 2012). Indeed, 

activation of calpain through a Ca2+-dependent mechanism is required for growth 
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cone formation (Gitler and Spira, 2002). Proteolysis of cytoskeletal elements in 

the cut axon results in a reorganization of microtubule polarity in Aplysia (Sahly 

et al., 2006). This may generate a ‘trap’ for capturing both anterogradely and 

retrogradely transported vesicles, which are then available to fuse with the 

plasma mem-brane for efficient and effective formation of a growth cone (Erez 

and Spira, 2008). Work in vertebrate neurons indicates that activation of localized 

protein synthesis in the distal cut axon is also needed for growth cone formation 

(Verma et al., 2005). Though the proteins synthesized were not identified, TC10 

and Exoc3 mRNAs, which encode components needed for plasma membrane 

expansion, are locally translated in growing axons (Gracias et al., 2014). 

Stimulation of MAPKs and mammalian target of rapamycin (mTOR) converge on 

protein synthesis machinery and are needed for growth cone formation (Bradke 

et al., 2012). Thus, localized mRNA translation supports the initial transition of an 

injured axon into a regenerating axon. Subsequent growth of the axon requires 

delivery of necessary building blocks of cytoskeleton and membrane 

components, which is accomplished by anterograde transport of proteins, 

vesicles, and RNPs. 

2.3.2 UNEXPECTED ROLES FOR PROTEINS IN GROWING AXONS  

Axonal functions for nuclear proteins 

With technical advancements in subcellular imaging, protein/ RNA detection and 

analyses, and study of signal transduction mechanisms, previously unrecognized 

functions have been ascribed to proteins and protein networks that support 

neural repair. For example, epigenetic regulation is now well recognized as a 
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means to modulate expression of entire gene families, and there is clear potential 

for such chromatin-based modulation to contribute to neural repair (Finelli et al., 

2013). However, recent work from two groups have uncovered intra-axonal 

functions for histone deacetylase (HDAC) proteins that are classically viewed as 

modifiers of chromatin structure and, hence, transcription. The injury-induced 

Ca2+ entry into axons noted above produces a retrograde ‘Ca2+ wave’ that 

triggers exit of HDAC5 from the nucleus in a protein kinase C-dependent 

pathway. In keeping with classic functions of HDACs, the loss of HDAC5 from the 

nucleus supports expression of genes whose encoded proteins have roles in re-

generation (e.g., c-Fos, c-Jun, KLF4, KFL5, and Gadd 45a; see Cho et al., 2013 

and references within). However, HDAC5 is also anterogradely transported into 

the injured axon, where it supports deacetylation of microtubules. This decreases 

stability of microtubules in the cut axon that is needed for growth cone formation 

just proximal to the injury site. Curiously, this anterograde movement of HDAC5 

only occurred after peripheral nerve injury and not after optic nerve injury, a 

lesion of CNS axons (Cho et al., 2013), pointing to another distinction between 

the central and PNS with axonal injury (Cho et al., 2013). HDAC6 protein has 

also been shown to function in axons, but inhibition of HDAC6, rather than 

activation, brings growth-promoting effects (Rivieccio et al., 2009). For HDAC6 

inhibition, this allows for growth on nonpermissive substrates including myelin-

associated glycoprotein and CSPGs that block axonal growth after spinal cord 

injury. These observations suggest that HDAC5 and HDAC6 have antagonistic 

functions in neural repair. However, HDAC6 may contribute to axon health 
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because it facilitates the retrograde transport of protein aggregates for 

destruction in autophagosomes (Lee et al., 2010). It will be intriguing in the 

coming years to discover the mechanism of action and targets of these 

deacetylases in developing, regenerating the mature axons. 

New functions for adenomatous polyposis coli protein, a protein associated with 

colorectal cancer 

Other proteins have shown multifunctionality that impacts axon development and 

likely axon regeneration. Adenomatous polyposis coli protein (APC) is a large, 

multidomain microtubule-interacting protein initially discovered because 

truncating mutations lead to colorectal cancer in humans (Vogelstein and Kinzler, 

2004). APC has also been linked to axon growth through promoting microtubule 

polymerization (Chen et al., 2011). In addition to its function as a +TIP, APC 

interacts with many different proteins including β-catenin and GSK-3β from the 

canonical Wnt signaling pathway (Clevers and Nusse, 2012). Initial studies in 

fibroblasts raised the possibility that APC’s actions may also extend to inter-

action with mRNAs (Mili et al., 2008). More recent work has shown that APC 

binds directly to more than 250 neuronal mRNAs (Preitner et al., 2014). 

Interestingly, nearly half of those mRNAs were known to localize into growing 

axons of PNS sensory neurons, including the Importin β1 and β-actin mRNAs 

that are mentioned above. Preventing APC binding to a tubulin isoform mRNA 

(TUBB2B2) decreased axonal levels of this mRNA and caused growth cones to 

shrink, which could significantly hamper the growth cone’s ability to interact with 

growth substrates (Preitner et al., 2014). Though it is not clear whether APC is 
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needed for transport or translation of these mRNAs (or both), the protein is 

perfectly positioned in the growth cone to serve as a scaffold concentrating 

mRNAs and translational machinery near the processive tips of micro-tubules. 

There is work in developing neurons indicating that localized mRNAs accumulate 

along with translation factors and ribosome subunits adjacent to cytoplasmic tails 

of axon guidance receptors (Tcherkezian et al., 2010). It will be interesting to see 

if APC also contributes to transport or translation of mRNAs in injured axons 

where localized protein synthesis is known to contribute to regeneration. 

A protein kinase that can regulate both axon regeneration and Wallerian 

degeneration 

Genetic screens in model organisms, including flies, worms, and mice, identified 

the ‘dual leucine zipper kinase’ (DLK) as regulator of both axon regeneration and 

degeneration (Tedeschi and Bradke, 2013). DLK has also been called ‘ZPK’ in 

mice and ‘Wallenda’ in Drosophila. Loss of DLK delays degeneration of axons 

but also attenuates RAG transcription in the cell body (Shin et al., 2012a). 

Activation of DLK can lead to downstream activation of both JNK and 38 kDa 

mitogen-activated protein kinase (p38MAPK). As emphasized above, JNK 

activation is important in neural repair, and downstream c-Jun dependent 

transcription activates expression of RAGs in the cell body after axonal injury 

(Shin et al., 2012a). However, blocking JNK activation in severed axons distal to 

the injury site delays Wallerian degeneration, indicating dual functions for both 

DLK and JNK (Ferraris et al., 2013). In addition to JNK’s roles in axonal transport 

mediated through JIPs, JNK is known to target microtubule binding proteins that 
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regulate dynamic stability of these cytoskeletal elements, which can influence 

both axon formation and regeneration (Tedeschi and Bradke, 2013). JNK 

phosphorylation triggers degradation of super cervical ganglion clone 10 

(SCG10, also called Stathmin-2) in axons (Shin et al., 2012b). SCG10 is a 

membrane bound protein that destabilizes microtubules (Riederer et al., 1997). 

Degradation of SCG10 in the severed axon is linked to Wallerian degeneration, 

but SCG10 is rapidly replenished in the proximal axon segment proximal to the 

injury and this is needed for regeneration (Shin et al., 2014). Destabilization of 

axonal microtubules through SCG10’s actions near the growth cone contributes 

to axon motility. JNK is also known to phosphorylate microtubule-associated 

protein 1b (MAP1b) in axons, which conversely increases stability of 

microtubules (Chang et al., 2003). Interestingly, the mRNA encoding a protein 

kinase that can be an intermediate between DLK and JNK, MKK7, or mitogen-

activated protein kinase kinase 7 (MAP2K7), localizes to proximal neurites of 

differentiating NIE-115 cells and primary hippocampal neurons (Feltrin et al., 

2012). This may provide a means to compartmentalize the functional outcome of 

JNK’s activation in growing axons, by concentrating substrates that differentially 

modify microtubule dynamics to different sites along the axon (e.g., growth cone 

for destabilization vs. axon shaft for stabilization). 

Regulation of microtubule motor proteins can directly support axon regeneration 

Interestingly, kinesin and dynein motors have recently been shown to 

have unexpected roles in attenuating axon growth. The levels and/or activity of 

kinesin and dynein motors may contribute to axonal growth by providing a gauge 
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for how much material the axon needs in order to grow (Albus et al., 2013). In 

cultures of adult sensory neurons, partial depletion of kinesin and/or dynein 

heavy chains with siRNA actually increases axon length over time (Rishal et al., 

2012). Legs at odd angles (Loa) mice that have reduced levels of dynein heavy 

chain 1 (Dync1h1) show increased axon length in developing limb buds 

indicating that this length sensing mechanism is also relevant for axon growth in 

vivo (Rishal et al., 2012). These data suggest that continual anterograde and 

retrograde signaling, analogous to a radar signal, contributes to axon growth 

rates (Kam et al., 2009). However, the cargos that are needed for this, both those 

carried anterograde into the axons and those carried retrograde back to the cell 

body, are not clear 

Work from the Baas group using depletion of kinesins also suggested that 

localized interactions of kinesin and dynein motors could affect axon length (Liu 

et al., 2010). They observed that partial depletion of kinesin-5 or kinesin-12 in-

creased axon length in cultured neurons, but attributed this to a shift in the 

tractile forces along the distal axon to favor increased growth (Myers and Baas, 

2007; Liu et al., 2010). They hypothesized that loss of either kinesin allows 

cytoplasmic dynein to pull microtubules in the opposite direction, moving more 

microtubules from the axon shaft into the growth cone, resulting in both increases 

in axon length and the inability of the growth cone to turn properly without spatial 

control over the microtubules in the growth cone (Liu et al., 2010). Regardless of 

whether this is a cargo-dependent signaling mechanism or localized force 

differentials through altered motor stoichiometry, the end result of decreasing 



www.manaraa.com

42 

motor protein activity results in the counter-intuitive effect of increasing axon 

length. It will be of substantial interest to determine how these mechanisms can 

be integrated with the injury-dependent and regeneration-associated changes in 

axonal trafficking out-lined above that are essential for repair of neural 

connectivity. 

2.4 PERSPECTIVES 

Despite all that has been learned of neural repair mechanisms and the 

potential for using trafficking to encourage axons to regrow after injury, even is 

the PNS where regeneration is relatively robust, regenerating axons only 

progress at 1–2 mm per day. Thus, finding a means to increase growth rates 

should bring huge benefits. However, whether increased growth rate can be 

accomplished be modulating axon transport dynamics in vivo remains to be 

determined. Interesting potential targets for regulating axon growth through 

trafficking include the motors themselves, their regulatory partners, kinases, 

cargo adaptors, and specific cargos. 

In addition to overt axon elongation driven by growth cone advance, 

developing neurons must also undergo a different kind of axon growth even after 

synapse formation. Small-scale axon growth and remodeling of synaptic 

connections occur throughout adult life and underlies learning and memory. But 

this does not compare to increased length that nerves and axon tracts 

accomplish during growth from a late stage embryo to late adolescent, and is 

unlikely to be the mechanism underlying this elongation. There is some evidence 

that neurons switch to a stretch-induced interstitial growth as organisms increase 
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their rostral-to-caudal dimensions (Suter and Miller, 2011). Cultured sensory 

neurons have been ‘stretched’ in an attempt to model this process, and within 

limits, stretching results in increased rates of axon growth while maintaining 

electro-physiological function (Pfister et al., 2006). The mechanisms underlying 

this increased growth are not clear, but it would seem that the axon must lay 

down more cytoskeleton and membrane or suffer compromised integrity. Adult 

neurons also seem to tolerate this axon stretching less well than embryonic 

neurons, which could relate to age acquired cytoskeletal modifications or loss of 

developmental gene expression programs (Loverde et al., 2011). Still the 

concept of stretch-induced growth may be a promising lead for future neural 

repair strategies once the mechanism(s) can be uncovered, particularly if this 

might complement other growth-promoting strategies. 

There are intersections between neural repair, axonal transport, and 

neurodegenerative mechanisms that warrant mention. As indicated above, DLK 

and SCG10 have dual roles in regeneration and axonal degeneration. The 

severed axon has lost its cell body source of proteins, RNPs, and organelles. 

Consequently, this severed axon segment needs to survive on existing entities, 

or gather what it needs from its local environment (e.g., glia). To some extent, 

defects in axonal transport can result in a similar situation. Reduced anterograde 

delivery of axonal components produced in the cell body and reduced transport 

of signals originating in distal targets can compromise the health of the neuron. 

Indeed, transport defects can be a key factor in neurological diseases and 

mutations or depletion of motor proteins or their regulators are emerging as 
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causative agents in disease. Beyond Huntington’s disease mentioned above, 

defects in axon transport in age-related dementias such as Alzheimer’s disease 

(Kanaan et al., 2013). The distances that motor axons traverse may make them 

particularly vulnerable to transport deficits. Consistent with this notion, a KHC 

mutation that disrupts microtubule binding has been found in patients with 

hereditary spastic paraplegias, mutations in mouse DHC lead to an ALS-like 

motor neuron degeneration (Fichera et al., 2004; Ikenaka et al., 2012) and a 

mutation in the p150Glued dynactin subunit has been found in an autosomal 

dominant form of lower motor neuron disease (Puls et al., 2003).  

Symptoms of neurodegenerative diseases including ALS have been linked 

to loss of synapses that may be initiated by ‘dying back’ of the distal axon 

(Adalbert et al., 2012). Blocking the degeneration of their axons can prevent the 

death of neurons in some neurodegenerative diseases. For example, deletion or 

inhibition of DLK is neuroprotective in cellular and animal models of Alzheimer’s 

disease, Parkinson’s disease and glaucoma (Ferraris et al., 2013). Expression of 

axonally targeted Ube4b-NMNAT1 fusion protein (Wallerian degeneration slow 

protein, ‘Wlds’) can delay Wallerian degeneration and prevent neuron loss in 

several different animal models of neurodegeneration (Coleman and Freeman, 

2010). Delayed degeneration occurs because the Wlds protein maintains 

nicotinamide adenine dinucleotide (NAD+) levels in the severed axons. Normally 

axons contain NMNAT2 that fulfills the same enzymatic function to maintain 

NAD+, but NMNAT2 has short a half-life and must be continually replenished by 

anterograde transport (Gilley and Coleman, 2010). If transport becomes 
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compromised, the neuron can be placed in the vulnerable position of losing its 

axon. Intriguingly, work in ALS animal models pointed to a shift in the 

retrogradely transported cargos from ‘pro-survival’ cargos to ‘stress-related’ 

cargos with increasing severity of neurodegeneration (Perlson et al., 2009). The 

similar responses in physical injury of the axon and neurodegenerative diseases 

suggest the possibility that neurons in both cases may be mounting, or 

attempting to mount, a regenerative response, although few studies have 

addressed this possibility. Coordination of several signal transduction pathways 

and intracellular trafficking/signaling is needed to mount and maintain a 

regenerative response. Small alterations in these pathways could effectively alter 

function, growth, and maintenance of the axon.  

Axon injury/repair and Lis1 

 While the bulk of this chapter is a review beyond the scope of the work 

I’ve completed during my doctoral degree, it is relevant to some future directions 

we are beginning to explore in the lab and covers some of the signaling 

pathways involved in regulating transport, which plays a crucial role in axon 

regeneration. Specifically, the sections regarding the role of motor proteins in 

injury signaling and how transport of cellular components (cytoskeletal proteins, 

synaptic proteins, etc.) is critical to regeneration of an injured axon are intimately 

related to the work I have published and present in this dissertation. 

 Additionally, our lab has begun investigating the role of Lis1 in nerve 

regeneration. There are multiple aspects of injury and repair that Lis1 may 

regulate. First is the retrograde injury signaling – is Lis1 involved in the transport 
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of pSTAT3 and other injury signals from the site of injury to the nucleus? 

Additionally, Lis1 and its regulation of dynein could have effects on axon growth 

itself through transport of cellular components and its effects on cytoskeletal 

dynamics. Indeed, Figure 3.2I in Chapter 3 shows data indicating Lis1 knockout 

may disrupt growth of axons from cultured adult DRG neurons. Future 

experiments will attempt to determine the mechanism through which this occurs. 
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Figure 2.1: Schematic of neural trafficking in mature, injured, and 

regenerating axons. A, Schematic of mature axon with proximal on left and 

distal on right; microtubules show characteristic polarity with plus ends 

oriented distally. With this polarity, kinesin is used for anterograde transport 

and dynein is used for retrograde transport. Intermediate filaments and 

cortical microfilaments characteristic of the mature axon are not shown here. 

B, With injury of the axon, the higher extracellular (Ca2+) results in Ca2+ influx 

(1) that triggers membrane sealing, proteolysis, and translation of resident 

mRNAs encoding injury-associated gene (IAG) products in axons. Injury 

results in a shift in retrograde transport (2), including signaling proteins that 

are ‘activated’ locally after injury as well as newly translated proteins 

encoded by the some of these IAG mRNAs in axons. Transcription in the 

neuronal cell body is altered by this shift in transport resulting in increased 

transport of regeneration-associated gene (RAG) products (3) into the 

injured axon to support neural repair. C, The repaired end of the injured axon 

is transformed into a growth cone that is rich in actin microfilaments and 

contains dynamic microtubules that support growth. This figure is adapted 

from (Kalinski et al., 2015a). 
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CHAPTER 3 

AN ESSENTIAL POSTDEVELOPMENTAL ROLE FOR LIS1 IN 

MICE2 

3.1 INTRODUCTION 

LIS1 mutations in humans cause a “smooth brain” mal-formation called 

lissencephaly (LIS) characterized by severe cognitive and motor impairments 

and worsening epilepsy, leading to early mortality (Dobyns and Das, 1993; 

Dobyns et al., 1993; Sapir et al., 1999; Gleeson, 2000; Sicca et al., 2003; Saillour 

et al., 2009; Reiner and Sapir, 2013; Herbst et al., 2016). Most of the human 

mutations result in a null allele with 50% reduction of LIS1 protein levels, which 

profoundly impacts the developing nervous system. Other mutations can produce 

a milder phenotype, but the phenotype/genotype correlation is complex. A classic 

mouse study made it clear that gene dosage is relevant, as progressive reduction 

of Lis1 protein levels caused progressively more severe phenotypes (Hirotsune 

et al., 1998). Deletion of a large portion of one Lis1 allele in mice, resulting in a 

null allele, delays neuronal migration and differentiation, but unlike humans, 

mature mice show mild neurologic abnormalities and are viable and fertile 

(Hirotsune et al., 1998; Gambello et al., 2003). Cre-mediated knockout (KO) in 

                                                           
2 Hines TJ, Gao X, Sahu S, Lange MM, Turner JR, Twiss JL, Smith DS. (2018). An Essential Post-
Developmental Role for Lis1 in Mice. eNeuro. doi: 10.1523/ENEURO.0350-17.2018. Reprinted here with 
permission from the publisher. 
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specific subpopulations of developing neural cells in mice impacts mitosis and 

nucleokinesis, causing developmental delay (Tsai et al., 2005; Tsai et al., 2007; 

Yingling et al., 2008; Youn et al., 2009; Hippenmeyer et al., 2010). 

Lis1 is a highly conserved regulator of the minus-end directed microtubule 

motor protein, cytoplasmic dynein 1; together they regulate neural stem cell 

spindle orientation, nucleokinesis, and nuclear envelope breakdown during brain 

development (Vallee et al., 2001; Wynshaw-Boris and Gambello, 2001; Gambello 

et al., 2003; Shu et al., 2004; Tsai et al., 2005; Vallee and Tsai, 2006; Tsai et al., 

2007; Hebbar et al., 2008; Schwamborn and Knoblich, 2008; Yingling et al., 

2008; Youn et al., 2009; Hippenmeyer et al., 2010; Moon et al., 2014). In fact, 

mutations in the dynein heavy chain gene DYNC1H1 can also cause cortical 

malformations in humans (Vissers et al., 2010; Willemsen et al., 2012; Poirier et 

al., 2013). 

Of particular interest are reports that DYNC1H1 mutations cause later 

onset neurologic disorders, including forms of spinal muscular atrophy (SMA) 

and Charcot-Marie-Tooth disease (Weedon et al., 2011; Harms et al., 2012). 

Additionally, mutations in genes encoding two other dynein regulators DCTN1 

and BICD2, cause Perry syndrome and SMA (Wider and Wszolek, 2008; 

Neveling et al., 2013; Oates et al., 2013; Peeters et al., 2013). The extent to 

which Lis1 functions post-developmentally, especially in minimally proliferative 

tissues like adult brain, has not been studied extensively. Hunt et al. (2012) found 

that heterozygous Lis1 KO in six-week-old mice altered synaptic function in the 

hippocampus in the absence of altered laminar granule cell architecture, but the 
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mechanisms underlying the altered activity are not known (Hunt et al., 2012). It 

has been shown that Lis1 manipulations impact dynein-dependent axon transport 

in sensory neurons cultured from adult rats (Smith et al., 2000; Pandey and 

Smith, 2011). These results suggest that Lis1 is a positive regulator of dynein-

based axon transport in adult mammals. This was also found in adult mouse 

DRG neurons (Klinman and Holzbaur, 2015). Although axon transport studies 

suggest a role for Lis1 in cultured adult neurons, these neurons do not form 

synaptic connections, so its involvement in synapse formation and maturation is 

currently unknown. If Lis1 indeed regulates axon transport in the mature nervous 

system, Lis1 mutations could have deleterious effects on circuitry in mature 

brains. We have addressed this fundamental question using a tamoxifen-

inducible Cre-Lox system to disrupt Lis1 selectively in adult mice. We show that 

Lis1 is indispensable in adult mice, and describe unexpected temporal and 

spatial recombination patterns and how they impact the phenotype of Lis1 KO in 

adult animals. Our data point to a vital role for Lis1 in cardiorespiratory nuclei in 

the hindbrain. 

3.2 RESULTS 

3.2.1 LIS1 IS EXPRESSED IN ADULT MOUSE TISSUES, PREDOMINANTLY  

 IN THE NERVOUS SYSTEM 

 As detected by automated capillary immunoblotting, levels of Lis1 protein 

were only modestly lower in adult brain than embryonic brain protein samples 

(Fig. 3.1). Substantial Lis1 was also observed in adult spinal cord and dorsal root 

ganglia. While Lis1 could be detected in adult heart, liver, kidney, lung, and 
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diaphragm, the levels were much lower in all non-nervous tissues tested than in 

brain, spinal cord and DRG. Therefore, Lis1 may function in other tissues, but is 

either present in fewer cells or at lower amounts per cell. 

3.2.2 KO OF LIS1 BY CRE-MEDIATED RECOMBINATION CAUSES AXON 

TRANSPORT AND GROWTH DEFECTS IN CULTURED ADULT SENSORY 

NEURONS 

 All mouse strains used in these studies are described in Table 1. To test 

the effectiveness of the Act-Cre-ER model for inducing recombination in neurons 

and reducing Lis1 expression, DRGs from Lis1 KO mice and the no Cre controls 

were dissociated and cells cultured for 24 h. Cultures were treated with 4-OHT 

for an additional 72 h. No tamoxifen-induced recombination was observed in the 

no Cre control cultures, as detected by prominent tdTomato fluorescence but no 

GFP (Fig. 3.2A). In contrast, substantial recombination was observed in the 

majority of neurons in the Lis1 KO cultures, detected by the presence of bright 

GFP fluorescence (Fig. 3.2B). GFP was observed in both axons and cell bodies. 

Also, Lis1 protein levels in extracts prepared from Lis1 KO cultures was greatly 

reduced relative to no Cre control cultures (Fig. 3.2C). Together these findings 

demonstrate effective KO of Lis1 by bath-applied 4-OHT in cultures of Lis1 KO 

mice but not of no Cre controls. 

Intraperitoneal injection of tamoxifen into adult Lis1 KO mice also resulted 

in recombination in DRGs. For this experiment we injected 8 mg of tamoxifen on 

two consecutive days (2 x 8 mg regimen; see Materials and Methods) and 

harvested DRGs on day 4 after the first injection. Bright GFP fluorescence was 
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observed in neuronal plasma membranes and satellite cells in DRG sections 

from these animals (Fig. 3.2D). No GFP was detected in DRGs from no Cre 

control animals injected at the same time (data not shown). Dissociated cultures 

prepared from no Cre control DRGs showed only tdTomato fluorescence (Fig. 

3.2E), while Lis1 KO cultures exhibited bright GFP fluorescence indicative of 

substantial recombination (Fig. 3.2F). We first immunostained these cultures for 

NF to label axonal processes specifically so that images could be analyzed using 

automated software algorithms. However NF immunoreactivity was much more 

prominent in axon endings in Lis1 KO axons, possibly reflecting altered NF 

transport (Fig. 3.2E, F). Because of this we used the GFP and tdTomato signals 

to manually count varicosities. As predicted, the KO neurons had significantly 

more varicosities than the no Cre controls (Fig. 3.2G). Although varicosities occur 

normally at sites of growth cone pausing or sites of branch formation (Rees et al., 

1976; Malkinson and Spira, 2010) an increased number is often associated with 

axonal blockages due to transport defects (Liu et al., 2012). Indeed, reduced 

retrograde transport of acidic organelles in living axons was observed in Lis1 KO 

axons compared to no Cre controls (Fig. 3.2H) consistent with other studies in 

adult rat DRG neurons where Lis1 was depleted using siRNA transfections 

(Pandey and Smith, 2011). We also observed that Lis1 KO axons appeared 

shorter. To quantify this we measured total axon length per neuron using a 

mixture of neuron-specific antibodies to ensure uniform labeling of axons (Fig. 

3.2I). On average, Lis1 KO neurons had significantly shorter axons. There were 
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also fewer neurons that had extended axons on day 2 after plating, indicating a 

delay in the onset of axon regeneration (Fig. 3.2I). 

3.2.3 LIS1 KO CAUSES A SEVERE PHENOTYPE IN ADULT MICE 

  Surprisingly, the 2 8 mg regimen caused a rapid decline in health of Lis1 

KO animals, with spinal kyphosis (Fig. 3.3A) and hind leg clasping (Fig. 3.3B) 

observed 4 d after the first injection. None of the control animals showed this 

phenotype. In early experiments animals died within a week after the first 

injection, and mice were subsequently killed as soon as they began to exhibit 

symptoms, typically on days 3–5. Animals that were given a different regimen of 

tamoxifen, 2 mg injected for five consecutive days (5 x 2 mg regimen), remained 

non-symptomatic for nearly two weeks, after which they exhibited similar 

symptoms as observed in the 2 x 8 mg regimen. Figure 3.3C shows symptom-

free survival duration plots for these animals. No differences were observed 

between male and female animals. Most animals were 2 months old at the time 

of injection, but similar responses were observed in older animals (4-5 months). 

Control animals did not exhibit any symptoms but were typically killed at the 

same time as KOs to be able to compare tissues for extent of recombination and 

Lis1 expression levels. However, six no Cre control and six CAG-cre/Esr1 

animals that received the 2 x 8 mg tamoxifen regimen lived for over a month with 

no detectable symptoms (Fig. 3.3C). 
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3.2.4 TEMPORAL DIFFERENCES IN TAMOXIFEN-INDUCED RECOMBINATION IN 

DISTINCT BRAIN REGIONS OF LIS1 KO MICE  

 Lis1 KO mice and no Cre control strains were given the 2 8 mg tamoxifen 

regimen. As expected, the no Cre control brains only exhibited tdTomato 

fluorescence on day 4 after the first injection (Fig. 3.4A, left). In contrast, bright 

GFP fluorescence was detected in Lis1 KO mice, but surprisingly, primarily in 

midbrain and hindbrain regions, with little fluorescence detected in the cortices 

(Fig. 3.4A, right). A similar result was observed in no flLis1 control so the 

recombination pattern is similar regardless of whether or not the mice carry the 

floxed Lis1 alleles. 

 Although the severity of the phenotype in Lis1 KO mice prevented 

examination of recombination at later times, no flLis1 control animals and Lis1 

KO hets remained symptomless for at least three weeks after the 2 x 8 mg 

tamoxifen regimen. These animals showed substantial recombination observed 

across the entire brain, including the cortex, demonstrating variable rates of 

recombination in different brain regions with this 2 x 8 mg tamoxifen regimen 

(shown for Lis1 KO het in Fig. 3.4B). 

 In Lis1 KO mice recombination was observed throughout the medulla pons, 

midbrain and cerebellum and into the spinal cord, but only sparsely in the cortex 

and hippocampus (Fig. 3.4C). At this level of analysis, the most prominent 

recombination in the cerebellum occurs in the molecular layer in linear profiles 

reminiscent of Bergmann’s glia. Substantial recombination was also ob-served in 

the olfactory bulb and choroid plexus (Fig. 3.4C). GFP-positive cells in the 
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brainstem appeared stellate in shape (Fig. 3.4D). White matter tracks in the 

brainstem and cervical spinal cord were also GFP-positive (Fig. 3.4E). This GFP 

distribution correlates with the reduced Lis1 expression observed in brainstem 

and cerebellum but not in cortex (Fig. 3.4F). 

3.2.5 LIS1 KO OCCURS IN BOTH NEURONS AND GLIA 

 In cryosections of Lis1 KO DRGs (2 x 8 mg regimen), recombination was 

observed in both neurons and satellite cells (Fig. 3.2C). Membrane-targeted GFP 

was observed along neuronal membranes in the brainstem, Purkinje cells in the 

cerebellum, and motor neurons in the spinal cord (Fig. 3.5A–F). It was more 

difficult to distinguish neuronal processes from glia or axons from dendrites in the 

neuropil. Since Lis1 depleted DRGs neurons show altered axon transport and 

DRGs cultured from Lis1 KO animals showed signs of altered axon transport, we 

examined cross sections of phrenic, vagus, and sciatic nerves, as well as spinal 

cord ventral roots. Two concentric rings of GFP were typically observed around 

myelinated axons (Fig. 3.5G–J). The outer ring flanked the periphery of the 

myelin sheaths (Fig. 3.5I) that stained for myelin basic protein (Fig. 3.5J). GFP 

was not observed in the tightly packed myelin sheath itself, so the outer ring 

likely represents the plasma membrane of the myelinating glial cell. The inner 

ring was juxtaposed along the axoplasmic membrane of the ensheathed axon, 

and we interpret this as representing tamoxifen-induced recombination in axons 

of Lis1 KO neurons. This interpretation is strengthened by the observation that 

only an outer GFP ring was observed in some myelinated axons (Fig. 3.5I), 

which would be unlikely if the inner GFP-positive ring was also part of the 
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myelinating Schwann cell. Unmyelinated C-fiber bundles in the sciatic nerve are 

ensheathed by membranes of Schwann cells that do not form myelin. These 

“Remak bundles” can be observed by EM (Fig. 3.5K). Red and green fluorescent 

rings were often observed in the same Remak bundles indicating that some, but 

not all axons in the Remak bundle had undergone recombination (Fig. 3.5L). 

Together these data support the in vitro finding that recombination, and by 

inference, Lis1 KO, occurs in both neurons and glia. The preponderance of 

recombination in the midbrain, hindbrain, and PNS, coupled with reduction in 

Lis1 protein levels in these regions, suggest that Lis1 KO in neurons and glia in 

these regions contributes to the observed neurologic phenotypes. 

3.2.6 BRAINSTEM NEURONS SHOW CHROMATOLYSIS IN LIS1 KO MICE 

 Figure 3.6A shows GFP expression in a coronal section through the 

hindbrain, with a dense concentration of GFP-positive cells in the ventral 

hindbrain. This area contains nuclei that are vital for cardiorespiratory function, 

and complete functional loss of these neurons would result in rapid death (Melov 

et al., 1998; Quintana et al., 2012). Impairment of axonal transport or other 

dynein-dependent processes in this region could account for the severe 

phenotype in Lis1 KO animals. Experimental axotomy and diseases that involve 

axonal dysfunction can produce the cell body response of chromatolysis (Cragg, 

1970; Hanz and Fainzilber, 2006). Though the mechanisms underlying 

chromatolysis remain hypothetical, the process is characterized by nuclear 

swelling and nuclear acentricity, both of which were observed in GFP-rich 

regions in coronal sections through the brainstem of Lis1 KO mice (Fig. 3.6C). 
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The nuclei were significantly larger and more acentric than controls providing 

evidence for axonal dysfunction in these neurons (Fig. 3.6D–G). 

3.2.7 LIS1 LOSS IN THE HINDBRAIN IS THE MOST LIKELY CAUSE OF THE KO 

PHENOTYPE 

 Lis1 KO mice receiving the 2 x 8 mg tamoxifen regimen had a much more 

rapid onset of symptoms compared to the 5 x 2 mg regimen (Fig. 3.3C). Indeed, 

at a time when the 2 x 8 mg mice were severely affected (day 5), the 5 x 2 mg 

animals had no overt symptoms. Substantially more recombination was observed 

in the brains of 2 x 8 mg animals compared to 5 x 2 mg animals, which correlates 

with the onset of severe symptoms (Fig. 3.7A) and the level of Lis1 mRNA in the 

brainstem (Fig. 3.7B). In contrast, recombination in the heart was similar in both 

sets of mice (Fig. 3.7C), as were Lis1 mRNA levels, which were reduced equally 

with both regimens (Fig. 3.7D). This indicates that Lis1 KO in the heart is less 

likely to be responsible for the early onset of symptoms. Other tissues with 

sporadic GFP (lung, liver, and kidney) also showed a similar degree of 

recombination with both regimens, supporting the idea that the hindbrain loss of 

Lis1 contributes significantly to the KO phenotype. 

 We performed another experiment to directly test contributions of Lis1 KO in 

the heart to the phenotype observed in Lis1 KO mice by generating an inducible 

KO in which Cre-ER is driven by a Myh6 promotor (Myh6 KO; (Sohal et al., 

2001)). As expected, tamoxifen injections (2 x 8 mg) reduced Lis1 expression in 

the heart but not in the brainstem of these mice (Fig. 3.7E). Moreover, robust 

GFP expression, and thus Myh6 KO-dependent recombination, was observed in 
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the heart, but not in the brain (Fig. 3.7F). Despite significant recombination in the 

heart, 0/12 mice showed any detectable phenotype, and all lived apparently 

symptom free, until killed four weeks later. Together these data provide evidence 

that loss of Lis1 in midbrain/hindbrain neurons is responsible for severe 

phenotype in Lis1 KO mice. 

 

3.3 DISCUSSION 

We show that Lis1 KO by tamoxifen-induced recombination causes 

neuropathology and lethality in adult mice. The finding that Lis1 continues to play 

a vital role after the majority of mitosis and migration in the brain has occurred 

supports the idea that Lis1 regulates additional cellular processes such as axonal 

transport. Given the preponderance of evidence that Lis1 regulates cytoplasmic 

dynein coupled with the observed temporal and spatial pattern of Cre-mediated 

recombination, the simplest explanation for the severe phenotype caused by Lis1 

depletion is that defective axon transport results in pathologic changes in 

midbrain, hindbrain, spinal cord, and DRG neurons. That these areas are critical 

to the phenotype is supported by the correlation between the location and extent 

of recombination (and thus Lis1 loss), and the onset of symptoms using different 

tamoxifen dosing regimens. At the onset of severe neurologic symptoms (4 – 5 d) 

the 2 x 8 mg tamoxifen regimen produced substantial recombination in cells in 

those regions. At the same time point in animals exposed to the 5 x 2 mg 

tamoxifen regimen no symptoms were present and much less recombination was 

observed in these areas. Unlike the nervous system, other tissues (heart, lung, 
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liver, kidney) had a similar degree of recombination using both regimens, arguing 

for an important nervous system contribution to the Lis1 KO phenotype. This is 

further supported by evidence of chromatolytic neurons in the brainstem and 

axon transport defects and varicosities in DRG neurons cultured from Lis1 KO 

mice. Axons of the vagus, phrenic, sciatic nerves and ventral roots contained the 

Cre reporter (GFP) indicating that recombination had occurred in neurons. Lis1 

depletion in neurons with axons running in those nerves could contribute to the 

Lis1 KO phenotype. For example the vagus nerve contains autonomic axons 

emerging or converging on the nucleus ambiguous, solitary nucleus, dorsal 

nucleus of vagus, and spinal trigeminal nucleus, and is critical for 

cardiorespiratory control. The phrenic nerve contains sympathetic, sensory and 

motor axons innervating the diaphragm, mediastinal pleura, and pericardium. 

Brainstem perturbations in animals can lead to death due to cardiorespiratory 

disruption (Talman and Lin, 2013; Piroli et al., 2016; Sun et al., 2017). Thus, the 

idea that Lis1 KO in brainstem neurons is a lethal event in mice is not too 

farfetched. 

Sensory and motor neurons with axons in the sciatic nerve are less likely 

to contribute to the death of the animals, but may contribute to the leg clasping 

and kyphosis observed in 100% of Lis1 KO mice. Also, the finding that axon 

growth by DRG neurons in culture is compromised by Lis1 depletion indicates 

that peripheral nerve regeneration in vivo could be affected by changes in Lis1 

expression. The role of microtubule motors in developmental axon growth and 

axonal regeneration after injury is complex. In some studies, motor activity 
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appears to be a negative regulator of growth. Retrograde target derived signals 

prohibit growth in mature connected neurons (Smith and Skene, 1997). 

Transport-dependent length-sensing signals have an inverse relationship with 

axon length, in those studies dynein or kinesin knockdown or a specific dynein 

mutation caused adult DRG axons to be longer (Kam et al., 2009; Rishal et al., 

2012). Finally, stimulation of dynein by a BICD2 mutation resulted in shorter 

axons in cultured hippocampal neurons (Huynh and Vale, 2017). 

On the other hand, there are also many studies that indicate that both 

anterograde and retrograde signals promote regenerative growth (Mar et al., 

2014; Kalinski et al., 2015b). For example, a pro-growth injury signal that is 

required for axonal regeneration in the sciatic nerve requires retrograde transport 

by dynein (Ben-Yaakov et al., 2012). Dynein can push the cytoskeleton forward 

during axon initiation and elongation in developing axons (Dehmelt et al., 2006; 

Roossien et al., 2014), and DHC knockdown reduced microtubule movements 

into growing axons and stunted axon outgrowth in cultured adult PNS neurons 

(Ahmad et al., 2006). While our data focused on regeneration of adult axons, 

others have also found that depletion of Lis1 leads to decreased developmental 

axon growth (Grabham et al., 2007; Kumamoto et al., 2017). Taken together, 

these data suggest that Lis1 knockdown could reduce transport of regenerative 

signals and also disrupt dynein-dependent cytoskeletal changes required for 

axon growth. Because Lis1 overexpression stimulated dynein-dependent 

organelle transport (Pandey and Smith, 2011), it will be interesting to determine 

whether Lis1 overexpression also negatively impacts axon growth. 
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While it is critical to know the organs, tissues and cells that contribute to 

the severe Lis1 KO phenotype, it is equally important to determine which are less 

affected by Lis1 depletion. With respect to the midbrain/hindbrain, spinal cord, 

and DRG neurons, we cannot state that some neuronal subtypes are more 

affected by Lis1 KO than others, and in fact, suspect that disruption in all of them 

could be a contributing factor to the phenotype, as suggested above. With 

respect to other brain regions, including the cerebral cortex, hippocampus, 

striatum, pallidum, and hypothalamus, Lis1 KO animals died before significant 

recombination occurred in these regions. However, we expect that Lis1 is 

important in all axons; signs of pathology may have become apparent in these 

regions had Lis1 KO animals survived long enough for recombination to occur. 

Our heterozygous Lis1 KO animals exhibited substantial recombination in all 

brain regions by three weeks after 2 x 8 mg tamoxifen injection but did not exhibit 

leg clasping, kyphosis or lethality. It remains to be determined whether signs of 

axonal dysfunction will arise in cortical regions of heterozygous Lis1 KO mice as 

animals age. Another group used a similar inducible system to examine 

hippocampal function following heterozygous Lis1 KO in six-week-old mice (Hunt 

et al., 2012). They found an increase in excitatory synaptic input to granule cells 

in the absence of neuronal positioning defects. The molecular and cellular 

underpinnings of this are not known, but our data suggest that it might involve 

axonal transport disruption. In our study, a much more limited Lis1 depletion was 

accomplished by stereotaxic injections of 4-OHT into lateral ventricles. This did 

not produce any obvious symptoms (leg clasping, kyphosis or death) probably 
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because recombination had occurred very sparsely and mainly in glial cells (data 

not shown). Ultimately, more selective examination of the role of Lis1 in adult 

neuronal circuits will require using Cre-driver(s) specific for different neuronal 

populations. Some glial cells exhibited Cre-mediated recombination in our Lis1 

KO mice. Glial cells in cortical, hippocampal and DRG cultures express Lis1 

(Smith et al., 2000), and there was substantial recombination in Bergmann’s glia, 

astrocytes and Schwann cells, so depletion of Lis1 in any of these cells could 

theoretically contribute to Lis1 KO phenotypes. Glial specific Lis1 KO may allow 

us to answer this question. 

With respect to other tissues in the mouse, we can state unequivocally 

that the severe Lis1 KO phenotype was not due to Lis1 depletion in 

cardiomyocytes. Depletion in liver, lung, and kidney was likely highly mosaic at 

the time when symptoms were severe because recombination was sparse in 

these tissues, and was similar on day 5 using both tamoxifen regimens. Thus, 

while our data suggest that Lis1 depletion in these tissues does not produce the 

rapidly lethal phenotype, to fully answer this question, we will need to use organ 

or cell specific Cre-ER drivers. 

While our studies unequivocally demonstrate a vital role for Lis1 in adult 

mice and strongly support a role in axon transport, Lis1 and dynein both function 

in dendrites, at least during development. For example, dynein-based transport 

occurs in dendrites in rodent hippocampal cultures (Kapitein et al., 2010; Ayloo et 

al., 2017), and signs of transport defects are observed in motor neurons in the 

adult Loa dynein mutant mouse (Wiggins et al., 2012). 
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Interestingly, Lis1 knockdown by shRNA expression disrupted the 

translocation of excitatory synapses in developing interneuron dendrites in 

hippocampal cultures and organotypic slices (Kawabata et al., 2012). Moreover, 

two-photon microscopy showed altered spine morphology dynamics in three-

week-old Lis1 mice (Sudarov et al., 2013). Together, these reports suggest that 

Lis1 dysfunction in dendrites in the midbrain, hindbrain, and spinal cord could 

contribute to the Lis1 KO phenotypes. 

Uncovering a role for Lis1 in axonal or dendritic transport in post-mitotic, 

connected neurons is interesting for several reasons. First, if axonal transport is 

compromised in LIS, it could contribute to the seizures (which become 

increasingly frequent and severe) and the early lethality typical of the disorder. 

Axon transport defects, unlike defects that arise because of brain malformations 

that occur in utero, might be ameliorated with drugs that target the dynein 

regulatory machinery. Second, dynein-related proteins are linked to many 

neurodegenerative diseases (Rees et al., 1976; Wider and Wszolek, 2008; 

Weedon et al., 2011; Harms et al., 2012; Neveling et al., 2013; Oates et al., 

2013; Peeters et al., 2013). In fact, respiratory problems in the late-onset 

disorder, Perry Syndrome, are the cause of lethality in humans (Wider and 

Wszolek, 2008). To treat such disorders, it is critical to understand the 

mechanisms regulating dynein in axons. In most cell culture studies, Lis1 

overexpression stimulated, and Lis1 disruption reduced processivity (Liu et al., 

2000; Smith et al., 2000; Pandey and Smith, 2011; Shao et al., 2013; Klinman 

and Holzbaur, 2015; Villarin et al., 2016). However, one transport study indicated 
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that Lis1 knockdown increased mitochondrial transport (Vagnoni et al., 2016), 

and several in vitro biophysical studies showed that Lis1 inhibited processivity of 

purified dynein (Yamada et al., 2008; McKenney et al., 2010; Huang et al., 2012). 

More recent assays using purified proteins are beginning to reveal how this might 

occur at the molecular level in the context of other dynein regulators like dynactin 

and BICD2 (Baumbach et al., 2017; DeSantis et al., 2017; Gutierrez et al., 2017). 

In those studies, Lis1 dramatically increased dynein processivity. Interestingly 

BICD2 mutations that cause SMALED stimulate dynein processivity, so motor 

activity must be finely tuned (Huynh and Vale, 2017). Kinase pathways that 

impact dynein function have been identified. CDK5, mutations in which have 

been linked to LIS (Magen et al., 2015; Parrini et al., 2016) and other kinases 

phosphorylate and regulate the Lis1- and dynein-interacting protein Ndel1 

(Hebbar et al., 2008; Pandey and Smith, 2011). Phosphorylation also regulates 

motors directly (Gibbs et al., 2015). We recently reported that insulin-dependent 

inhibition of GSK3b, a kinase with a growing list of neurologic disease links 

(Dell'Osso et al., 2016), phosphorylates dynein and regulates its interactions with 

Ndel1 and APC (Gao et al., 2015; Gao et al., 2017). It will be interesting to 

determine whether these pathways can be manipulated to alter the severity of 

the Lis1 KO phenotype, and if they can be used in trying to alleviate symptoms of 

patients with diseases caused by transport defects. 
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3.4 MATERIALS AND METHODS 

Mice 

All animal experiments were conducted under a protocol approved by the 

Animal Care and Use Committee of the University of South Carolina. Males and 

females were used in experiments; no differences were observed in outcomes 

between males and females. Four mouse strains were used to generate the 

inducible Lis1 KO mice (Table 3.1). (1) 129S-Pafah1b1tm2Awb/J (The Jackson 

Laboratory 008002, RRID:IMSR_JAX:008002): loxP sites flank exons 3 – 6. 

Homozygous mice are viable and fertile, but have mild hippocampal 

abnormalities and express 75% of WT Lis1 levels (Hirotsune et al., 1998); (2) 

Tg(CAG-cre/ Esr1 )5Amc/J (The Jackson Laboratory 004453, RRID: 

IMSR_JAX:004453), a chicken β-actin promotor drives expression of Cre 

recombinase fused to a modified estrogen receptor; (3) Tg(Myh6-

cre/Esr1)1Jmk/J (The Jackson Laboratory 005650, RRID:IMSR_JAX:005650), 

expression of Cre-ER is under the control of a cardiac-specific a-myosin heavy 

chain promoter so that tamoxifen stimulates recombination only in cardiac cells; 

and (4) Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (The Jackson 

Laboratory 007576, RRID:IMSR_JAX:007576), a Cre re-porter mouse with loxP 

sites flanking a membrane-targeted tdTomato cassette that is positioned 

upstream of a membrane-targeted EGFP cassette. All cells in these mice exhibit 

membrane-associated red fluorescence until the tdTomato cassette is deleted by 

Cre recombinase for expression of membrane-associated EGFP fluorescence, 

allowing visualization of both recombined and non-recombined cells in the same 



www.manaraa.com

66 

tissue (Muzumdar et al., 2007). Table 3.1 shows the crosses that were used to 

generate experimental animals, and shows the descriptive names used for each 

throughout the chapter. All strains used in experiments were homozygous for the 

Cre reporter. Genotyping of all animals was performed using primers and 

protocols recommended by The Jackson Laboratory. Primers are available on 

request. 

Tamoxifen administration 

Numbers of animals are provided below (Experimental design and 

statistical analysis). Tamoxifen was delivered by intraperitoneal or 

intracerebroventricular injections in adult mice (two to five months old). For 

intraperitoneal delivery, mice were injected with 40 mg/ml tamoxifen (Sigma-

Aldrich) dissolved in 10% ethanol and 90% corn oil (Sigma). Two different daily 

tamoxifen dosage regimens were tested based a previous study using this Cre-

ER strain (Hayashi and McMahon, 2002): regimen 1 (5 x 2 mg), 2 mg for five 

consecutive days (total 10 mg); and regimen 2 (2 x 8 mg), 8 mg injected on two 

consecutive days (total 16 mg). For intracerebroventricular delivery, mice were 

anesthetized with an isoflurane/oxygen vapor mixture (5% induction, 2–3% 

maintenance) and placed in a stereotaxic device (Kopf Instruments). Five 

microliters of 50 mM (Z) 4-hydroxytamoxifen (4-OHT; Sigma) dissolved in 100% 

ethanol was infused into the left lateral ventricle at a rate of 0.4 ml/min using a 5 

ml Hamilton syringe. The needle was left in place for one additional min before 

removal to allow for diffusion from the injection site. Coordinates (-1.0 mm 

posterior from Bregma, 1.0 mm mediolateral, and -2.5 mm ventral to skull 
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surface) were determined using the atlas of Paxinos and Franklin (Franklin and 

Paxinos, 2001). 

Analysis of Cre-mediated recombination by tdTomato/EGFP fluorescence 

Images shown in all figures are representative of data acquired from at 

least N = 3 animals per experiment. Animals under deep isoflurane anesthesia 

were perfused transcardially with ice-cold PBS, followed by 4% 

paraformaldehyde (PFA) in 0.1 M PBS (pH 7.4). Before sectioning, tissues were 

cryoprotected by immersion overnight in 15% sucrose, followed by 24 h in 30% 

sucrose in PBS. Tissues were then frozen in OCT compound (Fisher) using a 

beaker of 2-methylbutane chilled in dry ice. Ten- or 50-mm-thick cryosections 

were stored at 80°C until use. Whole brains and hearts were imaged immediately 

after dissection using an Olympus SZX-12 with an SZX-RFL2 coaxial 

fluorescence attachment. Cryosections were imaged using a Leica TCS SP8X 

confocal microscope equipped with LAS X software and a 63 oil immersion 

objective (1.4 N/A). Some images were obtained using a Zeiss Axiovert 200 

inverted microscope equipped with AxioVision software and a Plan-Neo 100 Å 

/1.30 and Plan-Apo 63 Å /1.40 oil-immersion objectives (Immersol 518F; Carl 

Zeiss, Inc.) or a Plan-Neofluor 20 dry objective. 

Protein isolation and immunoblotting 

All blots are representative of at least N = 3 repeats. Tissues were 

dissected quickly from CO2-killed mice and frozen in liquid nitrogen, followed by 

Dounce homogenization in ice-cold RIPA lysis buffer with protease and 

phosphatase inhibitors (Thermo). Total protein in extracts was determined using 
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a BCA assay (Thermo). Automated capillary electrophoresis and immunoblotting 

(Figs. 3.1, 3.2) was performed with the Wes Simple Western system using the 

manufacturer’s protocol (Protein Simple). One microgram of lysate was loaded 

for each sample. Anti-mouse (ERK1), anti-rabbit (Lis1), and total protein 

detection modules were used per manufacturer’s instructions. Blots were 

analyzed using Compass Software (Protein Simple). For traditional Western 

blotting (Figs. 3.4, 3.7) 10 mg of each sample were separated on 10% 

acrylamide gels, then transferred to PVDF membrane. Blots were probed with 

antibodies against Lis1 and dynein intermediate chain and proteins were 

detected by chemiluminescence. 

Sciatic nerve transmission electron microscopy  

While anesthetized with isoflurane, WT mice were perfused with PBS, and 

then buffered 2.5% glutaraldehyde. Nerves were removed and fixed overnight in 

2.5% glutaraldehyde, then sectioned and stained with osmium tetroxide for 

imaging on a JEOL 200CX Transmission Electron Microscope.  

Antibodies 

Primary antibodies used are as follows: Lis1 rabbit polyclonal 484/485 

(Smith et al., 2000; WB: 1:500); Lis1 rabbit polyclonal (Wes: 1:25, WB: 1:500; 

Santa Cruz Biotechnology sc-15319, RRID:AB_2159891); ERK1 rabbit 

polyclonal (Wes: 1:100; Abcam ab109282, RRID: AB_10862274); a mix of the 

pan-axonal neurofilament (NF) mouse monoclonal cocktail (IF: 1:500; BioLegend 

837904, RRID:AB_2566782); NF light, medium, and heavy chain chicken 

polyclonals (IF: 1:500; Aves NFL, NFM, and NFH, RRIDs: AB_2313553, 
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AB_2313554, AB_2313552); and the NF 200-kDa mouse monoclonal, clone 

RT97 (IF: 1:500; Millipore CBL212, RRID:AB_93408) were used to label NFs; 

GAP43 rabbit polyclonal (IF: 1:500; Novus Biologicals, NB300-143, RRID: 

AB_10001196); beta-III tubulin chicken polyclonal (IF: 1:500; Millipore AB9354, 

RRID:AB_570918); peripherin chicken polyclonal (IF: 1:500; Abcam ab39374, 

RRID:AB_777207); choline acetyl-transferase goat polyclonal (IF: 1:100; 

Millipore AB144P, RRID:AB_11214092); MAP2 chicken polyclonal (IF: 1:100; 

Abcam ab5392, RRID:AB_2138153); myelin basic protein chicken polyclonal (IF: 

1:500; Aves MBP, RRID:AB_2313550); a-tubulin mouse monoclonal (WB: 

1:2000; Sigma-Aldrich T5168, RRID:AB_477579); and dynein intermediate chain 

mouse monoclonal (WB: 1:1000; Santa Cruz Biotechnol-ogy sc-13524, 

RRID:AB_668849). Secondary antibodies used: HRP-conjugated goat anti-rabbit 

and mouse (WB: 1:50 000; Millipore 12-348 and 12-349, RRIDs: AB_390191 and 

AB_390192); Cy5-conjugated donkey anti-chicken, mouse, and goat (IF: 1:250; 

Jackson ImmunoResearch 703-175-155, 715-175-150, and 705-175-147, 

RRIDs:AB_2340365, AB_2340819, and AB_ 2340415); and DyLight 405-

conjugated donkey anti-chicken (IF: 1:250; Jackson ImmunoResearch 703-475-

155, RRID: AB_2340373). 

Preparation of DRG cultures 

Cultures were generated from two- to five-month-old Lis1 KO and no Cre 

or no flLis1 control mice. In some experiments mice were exposed to the 2 x 8 

mg tamoxifen intraperitoneal regimen then neurons harvested on day 4 after the 

first injection. In other experiments, 4-OHT (2 μM) was added directly to the DRG 
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cultures with these same genotypes without previous intraperitoneal injections. 

DRGs were harvested (20 per mouse), dissociated in type XI collagenase 

(Sigma) for 1 h at 37°C, and then triturated through a flamed Pasteur pipet. 

Dissociated neurons incubated in 0.05% trypsin (Invitrogen) at 37°C for 15 min. 

After a second trituration, cell suspensions were centrifuged through a 12.5% 

BSA solution to remove myelin fragments. Cells were then plated onto sterile, 

German glass coverslips (Fisher) coated with 10 mg/ml poly-D-lysine (300 kDa; 

Sigma) and 10 mg/ml laminin (Millipore). Cells were cultured in DMEM/F12 

medium (Corning) with 25 mM HEPES, GlutaMAX (Thermo Fisher), N-2 

supplement (Life Technologies), and 10% horse serum (HyClone). In some 

experiments, 100 mM cytosine arabinoside was added to reduce non-neuronal 

cell proliferation. 

Axonal varicosity analysis 

DRG neurons obtained after intraperitoneal injection were maintained in 

culture for 4 d and then fixed for 10 min in 4% PFA. Coverslips were mounted on 

glass slides using Prolong Gold Antifade (LifeTechnologies). Neurons were 

imaged using the ImageXpress XLS high content imaging system (Molecular 

Devices) equipped with a 20 objective. A segmented line (one-pixel width) was 

used to trace the axon using ImageJ software. Axonal swellings that protruded 

visibly beyond the one-pixel line on both sides were counted as varicosities. 

tdTomato-positive axons from N = 3 no Cre cultures (45 mm of total axon length) 

and EGFP-positive axons from N = 3 Lis1 KO cultures (27 mm of total axon 

length) were measured. 
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Axon growth/length analysis 

DRG neurons obtained after intraperitoneal injection were maintained in 

culture for 2 d and then fixed for 10 min in 4% PFA. Neurons were processed for 

immunofluorescence using a cocktail of neuron-specific antibodies: chicken anti-

peripherin, chicken anti-b III tubulin, chicken anti-NF (light, medium, and heavy 

chains), and rabbit anti-GAP43 to ensure all axons were uniformly labeled. 

Neurons were imaged using the ImageXpress Micro XLS system and axon 

lengths were measured using WIS-Neuromath software. N = 5 Lis1 KO mice, and 

N = 4 no flLis1 control mice were analyzed; n = 122 control and n = 70 KO 

neurons were measured. 

Organelle movement 

Cultured DRG neurons obtained after intraperitoneal injection were 

exposed to 100 nM Lysotracker-Red (Millipore Inc.) for 20 min. Coverslips were 

transferred into fresh medium containing OxyFluor (Oxyrase Inc.) and 25 mM 

HEPES (pH 7.4), and placed in a custom-built water-heated microscope stage 

warmed to 37°C. Organelles were imaged using a Zeiss Axiovert 200 microscope 

equipped with a C-Apo 63x /1.2 W/0.2 water-immersion objective. Images were 

acquired at 0.5-s intervals for 2 min using a Zeiss AxioCam HRm charge-coupled 

camera and linked AxioVision 4.7 software. Kymographs were generated from 

time-lapse movies using ImageJ soft-ware. N 2 mice of each genotype were 

analyzed, with a total of 27 axon segments analyzed from each genotype. A total 

of n 521 no flLis1 control and n 699 Lis1 KO organelles were included. Direction 
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of movement was determined by locating the cell body before imaging. Net 

displacement of 5 μm toward the cell body was categorized as retrograde. 

Immunofluorescence in DRG cultures and tissue cryosections 

Immunofluorescence experiments were performed in triplicate (N = 3 mice 

per genotype) and representative images are shown in the figures. After 

permeabilization with 0.1% Triton X-100 for 10 –30 min, samples were blocked in 

3% BSA (Fisher), 10% normal goat serum (Sigma), and 0.2% Tween 20 (Bio-

Rad) in PBS for 1 h. Cultures and nerve sections were exposed to primary 

antibodies for 1 h at room temperature. Brain and spinal cord sections were 

exposed to primary antibody over-night at 4°C. In both cases samples were 

exposed to fluorophore-conjugated secondary antibodies for 1 h at room 

temperature. Nuclei were stained with Hoechst dye and samples mounted using 

Prolong Gold. 

Quantifying chromatolysis in brainstem sections  

Animals were exposed to the 2 x 8 mg tamoxifen regimen. On day 4, 

coronal cryosections of brainstem from N = 3 no flLis1 control mice (n = 331 

neurons) and N = 4 Lis1 KO mice (n = 583 neurons) were stained with 1% 

toluidine blue and measured for nuclear enlargement and nuclear acentricity. The 

Allen Mouse Brain Atlas was used as a guide to select coronal brainstem 

sections in which the nucleus ambiguus and other cardiorespiratory centers were 

likely located. Landmarks such as the fourth ventricle and pyramus granular 

layers were used to identify the proper sections. Comparisons were made from 

matched sections. Substantial Act-Cre-ER mediated re-combination (GFP 
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expression) was consistently observed in similar sections following tamoxifen 

administration. ImageJ was used to determine nuclear and somal areas and 

centroids. The ratio of the nuclear area to the somal area was calculated to 

establish a “nuclear enlargement index.” A “centroid displacement index” was 

calculated by summing the X and Y displacement differences between the 

nuclear centroid and the somal centroid of each cell. 

RNA extraction and analysis 

RNA analysis was performed using tissues from 3 mice per treatment and 

genotype. RNA was isolated from flash frozen tissues using the QIAGEN 

RNAEasy kit per the manufacturer’s instructions. RNA concentration was 

determined by fluorimetry using Ribogreen reagent (Thermo Fisher). A total of 

100 ng RNA was reverse transcribed with a SensiFast cDNA Synthesis kit 

(Bioline). These cDNAs were used for quantitative droplet digital PCR (ddPCR) 

with Evagreen detection reagent and ddPCR Supermix (Bio-Rad). Droplets for 

ddPCR were made using a QX200 Droplet Generator (Bio-Rad). Results were 

analyzed using Poisson distribution on the QX200 Droplet Reader. Mouse Lis1 

primer sequences (forward, 5’ GCGAACTCTCAAGGGCCATA 3’ and reverse, 5’ 

CATTGTGATCGTGACCGTGC 3’) were designed using NCBI BLAST (NCBI 

accession #NM_013625). Mouse b2 micro-globulin (B2M) primers (forward, 5’ 

TTCTGGTGCTTGTCTCACTGA 3’ and reverse, 5’ CAGTATGTTCGGCTT 

CCCATTC 3’) were obtained from Harvard Primer Bank (B2M; NCBI accession 

#NM_009735; https://pga.mgh. harvard.edu/primerbank/). 
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Experimental design and statistical analysis  

Eighty-four Lis1 KO animals were given the 2 x 8 mg tamoxifen regimen; 

100% of these animals began to exhibit neurologic symptoms (leg clasping, 

kyphosis, decreased motility) within a week. Of these, 18 died during that time, 

and 66 were killed when symptoms became severe; 38 no flLis1 control and 73 

no Cre control mice were also given the 2 x 8 mg tamoxifen regimen. None of the 

controls showed any evidence of neurologic disorder or malaise, but most were 

killed at the same time as the Lis1 KO animals to compare results. However, six 

each of the control strains were monitored for four weeks after 2 x 8 mg 

tamoxifen and showed no symptoms. We also conducted mock injections of 

vehicle alone in 12 Lis1 KO animals. These controls also showed no symptoms. 

Table 3.2 describes the statistical methods used for all quantified 

experiments. The p-values were obtained using Excel or GraphPad Prism 5.
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Table 3.1: List of mouse strains used in Chapter 3. 

 

 

Founder mouse lines 

Jackson Labs strains Descriptive name used in paper 

129S-Pafah1b1
tm2Awb

/J Lis1 
LoxP/+

  or Lis1
 LoxP/LoxP

 

Tg(CAG-cre/Esr1*)1Jmk/J Act-Cre-ER (heterozygous) 

Tg(Myh6-cre/Esr1*) 1Jmk/J Myh6-Cre-ER (heterozygous) 

Gt(ROSA)26Sor
tm4(ACTB-tdTomato, -EGFP)Luo

/J Cre Reporter (heterozygous) 

All strains below are homozygous for the Cre Reporter 

Lis1 KO strains Descriptive name used in paper 

Lis1
LoxP/LoxP 

x Act-Cre-ER (het) Lis1 KO 

Lis1
LoxP/LoxP

 x Myh6-Cre-ER (het) Myh6 KO 

Control strains Descriptive name used in paper 

Act-Cre-ER No flLis1 Control 

Lis1
LoxP/LoxP

 No Cre Control 

Lis1
LoxP/+ 

x Act-Cre-ER Lis1 KO Het 

	

	

Table 1: Mouse strains and crosses used in these studies 
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Table 3.2: Table of statistical tests used in Chapter 3 figures. 
 

 

 

 

Figure 3.1: Lis1 protein is expressed in adult mouse tissues. A total of 1 µg of 

tissue lysates was analyzed using the Wes Simple Western System. Brain extracts 

from E19 were loaded as a positive control. All other extracts are from two-month-old 

animals. The size-based separation is processed by Compass software and 

displayed as virtual blots/gels. A, Immune detection of Lis1 in protein samples, 

depicted in a virtual immunoblot generated by the system. B, Total protein detection, 

visualized by a virtual Coomassie gel generated by the system. These blots are 

representative of three experimental repeats (N = 3). 

 

 
Description 

Data 
Structure 

Type of Test Statistical Value 

a 
Axonal varicosities 

Non-
Normal 

Mann-Whitney 
test 

p < 0.0001 

b 
Retrograde transport Normal t-test 

t(52) = 7.746, p = 3.2 x 
10-32 

c Nuclear Enlargement 
Index 

Normal t-test 
t(912) = 19.55, p = 3.6 x 

10-73 

d 
Centroid Displacement 

Index 
Non-

Normal 
Mann-Whitney 

test 
p < 0.0001 

e Lis1 mRNA in 
brainstem 

Normal ANOVA 
F(2, 19) = 5.033, p = 

0.0176 

f 
Lis1 mRNA in heart Normal ANOVA 

F(2,16) = 19.065, p = 
5.83 x 10-5

 

Table 2: Statistical table. 
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Figure 3.2: Lis1 KO impacts axonal function in adult mouse DRG neurons. A, Cultured DRG neurons from no 

Cre control exposed to 4-OH tamoxifen for 5 d expressed only tdTomato (red) showing no signs of recombination. 

B, In contrast, Lis1 KO neurons had strong GFP expression (green) demonstrating recombination. C, 4-OH 

tamoxifen reduced Lis1 protein levels in Lis1 KO neurons relative to no Cre control neurons (CON). D, 

Intraperitoneal injection of 2 x 8 mg tamoxifen in Lis1 KO mice resulted in GFP expression in intact DRGs after 4 d. 

Arrows point to DRG plasma membranes. E, Cultured DRG neurons prepared from intraperitoneally injected, no 

Cre control animals expressed only tdTomato (red). NF (blue) was prominent along axon shafts (white arrow) but 

less prominent in axon terminals (arrowhead). F, DRG neurons prepared from intraperitoneally injected Lis1 KO 

mice continued to express GFP (green) in culture, and NF (blue) was most prominent in distal axons and enriched 

in in varicosities (arrow). G, Insets from E, F have been digitally enlarged to show axonal varicosities (arrows). The 

bar graph in G shows the average number of varicosities per 100 µm of axon from N = 3 CON (45 mm total axon 

length) and three Lis1 KO (27 mm total axon length) mice. H, Kymographs were generated from time-lapse movies 

of LysoTracker labeled organelles in GFP-positive axons. The bar graph shows the percentage moving retrogradely 

in Lis1 KO and no flLis1 control cultures (CON). A total of 27 100 µm axon segments were analyzed from N = 2 

CON and N = 2 Lis1 KO mice. A total of n 521 control and n 699 KO organelles were analyzed. I, Cultured DRG 

neurons prepared from intraperitoneally injected, no flLis1 control and Lis1 KO mice were immunostained with 

neuron-specific antibodies, and the percentage of neurons with growing axons was determined from N = 4 CON 

and N = 5 Lis1 KO mice. A total of n = 2219 control neurons and n = 2410 Lis1 KO neurons were analyzed. Bars in 

G-I indicate mean SD. Significance determined by Mann–Whitney test (G), Student’s t test (H, I), p 0.05, p 0.001 

(see Table 3.2 for details). Scale bars: 20 µm (A, D, E), 5 µm (B), and 50 µm (I). 
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Figure 3.3: Lis1 KO via intraperitoneal tamoxifen injection in adult mice results 

in a severe phenotype. Lis1 KO mice exposed to tamoxifen invariably displayed 

spinal kyphosis (A, lower panel) and hind leg clasping (B, right panel). Neither was 

observed in control animals (CON) at any time. This includes the no Cre, no flLis1, 

Lis1 KO het, or mock-injected Lis1 KO animals. Both Lis1 KO and control mice were 

killed as soon as kyphosis and leg clasping became apparent in the KO animals. 

Phenotypes arose with latencies depending on the specific tamoxifen-dosing regimen 

(see Materials and Methods). C, Symptom-free survival curves show that the latency 

is shorter for the 2 x 8 mg regimen (N = 84) compared to the 5 x 2 mg regimen (N = 

12). Control mice were killed at the same time as the Lis1 KO mice for recombination 

and expression studies. However, six no Cre control mice and six no flLis1 control 

mice receiving the 2 x 8 mg dosing regimen survived symptom free for three weeks 

before they were killed (total N = 12). 
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Figure 3.4: Cre-dependent recombination in the brain after tamoxifen injection. 

All data in this figure are representative of observations from a minimum of N = 4 

animals of each genotype. A, On day 5 after the 2 x 8 mg tamoxifen regimen, no Cre 

control brains (CON, day 5) had bright tdTomato fluorescence (top left panel), but no 

EGFP fluorescence indicative of recombination (lower left panel). Lis1 KO mice (Lis1 

KO, day 5) showed reduced tdTomato fluorescence (top right panel) and expressed 

EGFP primarily in the hindbrain, indicating that Cre activity was pronounced in this 

brain region (lower right panel). B, Lis1 KO het mice [Lis1 KO (Het), day 21], which 

showed no sign of neurological problems through day 21 after the injection had 

substantial EGFP expression throughout the brain at that time. C, A sagittal section 

of a Lis1 KO brain on day 5 (Lis1 KO, day 5) shows mosaic recombination in 

midbrain (white arrow), hindbrain (magenta arrow), and cerebellum (blue arrow), 

with widely scattered EGFP-positive cells in cortex and hippocampus. 

Recombination also occurs in olfactory bulb (asterisk). D, Using higher 

magnification, GFP-positive cells in the midbrain can be seen interspersed with cells 

that have not yet undergone recombination. E, Fibers labeled with GFP are clearly 

visible in the brainstem. F, Lis1 expression is reduced in extracts from brainstem 

and cerebellum of Lis1 KO mice compared to no Cre controls. Scale bars: 5 mm (A–

C), 100 µm (D), and 20 µm (E). 
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Figure 3.5: Both neurons and glia show evidence Cre-dependent recombination. All data in this figure are 

representative of observations from a minimum of N = 4 animals of each genotype. A, GFP-positive neuropil 

surrounds MAP2-positive neurons (magenta) in a brainstem region thought to be the nucleus ambiguous in a mouse 

exposed to the 2 x 8 mg tamoxifen regimen. B, The neuron indicated in A has been digitally enlarged to show 

details. The arrow points to possible neuronal plasma membrane. C, Purkinje cells in the cerebellum stained with 

MAP2 (magenta) also have GFP-positive plasma membranes (white arrow) indicating that recombination occurred 

in these neurons. Neuropil in the molecular layer is also GFP-positive (arrowhead). D, The neuron in C has been 

digitally enlarged to show detail. E, GFP-positive neuropil surrounds a motor neuron (white arrow) labeled with 

ChAT (red) in the anterior horn of the thoracic spinal cord. GFP-positive fibers (arrowhead) can be seen coursing 

toward the ventral root. F, The motor neuron indicated in E is digitally enlarged to show detail. The white arrow 

points to apparent neuronal plasma membrane. G, A cross section through the phrenic nerve shows concentric 

rings of GFP around approximately half of the NF-positive axons (red). H, EM of a cross section through a WT 

mouse nerve showing myelinated axons. I, GFP can be observed as two concentric rings or single rings (arrows, 

outer ring, arrowhead, inner ring). J, The area between concentric rings is positive for myelin basic protein (blue), 

while the inside of the inner ring is positive for NF (red). K, EM of a cross section of WT mouse sciatic nerve 

showing Remak bundles of unmyelinated axons surrounded by a single glial cell (red arrow). L, Cross section of 

sciatic nerve from Lis1 KO mouse with a Remak bundle containing some GFP-encircled axons, and some without 

encircling GFP (arrow, positive for tdTomato only). Inset is digitally enlarged to show an axon without recombination 

(red, arrow) alongside recombined axons (green). Scale bars: 10 µm (A, C, G), 30 µm (E), and 2 µm (H–L). 
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Figure 3.6: Brainstem neurons in Lis1 KO mice exhibit signs of chromatolysis. 

A, A coronal section through the hindbrain on day 4 after the 2 x 8 mg tamoxifen 

regimen shows extensive recombination in the ventral brainstem containing 

cardiorespiratory centers. White circles indicate the region used in the analyses of 

chromatolysis. B, C, Sections were stained with toluidine blue to determine the size 

and position of the nucleus in neurons in the indicated regions. The neurons in B are 

from a no flLis1 control mouse. The neurons in C are from a Lis1 KO animal. D, A 

nuclear enlargement index (see Materials and Methods) was used to compare 

nuclear enlargement in no flLis1 controls (CON) and Lis1 KO (KO). E, The 

histogram shows the distribution of this index in CON and Lis1 KO neurons. F, The 

position of the nucleus within the soma was also determined using the centroid 

displacement index (see Materials and Methods). This involves determining the 

centroid position of both the nucleus and soma and calculating the total 

displacement distance (µm) of the nuclear centroid from the somal centroid. G, 

Histogram showing the distribution of CDI found in CON and KO neurons. Bars 

indicate mean +/- SD. Brainstem sections from three no flLis1 control and four Lis1 

KO mice were used in the chromatolysis study. This includes analysis of 331 control 

neurons and 583 Lis1 KO neurons. Significance determined by Student’s t test (D), 

or Mann–Whitney test (F); *** - p < 0.001 (see Table 3.2 for details). Scale bars: 1 

mm (A) and 10 µm (B, C). 
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Figure 3.7: Comparing the effect of Lis1 KO in brainstem and heart. A, Sagittal brain sections of Lis1 KO mice 5 

d after the initial injection of either five injections of 2 mg tamoxifen (top) or two injections of 8 mg tamoxifen 

(bottom). The 2 x 8 mg treatment resulted in much higher GFP expression than the 5 x 2 mg treatment, particularly 

in the brainstem and cerebellum. B, Lis1 mRNA levels normalized to B2M mRNA levels from brainstem of no Cre 

control mice injected with 2 x 8 mg tamoxifen (CON), and Lis1 KO mice injected with either 5 x 2 or 2 x 8 mg 

tamoxifen. Lis1 mRNA levels were significantly decreased in brainstem of 2 x 8 mg animals, but not 5 x 2 mg 

animals, relative to no Cre controls, 5 d after initial injection. C, Sections of heart from 5 x 2 mg (top)- and 2 x 8 mg 

(bottom)-treated Lis1 KO mice. Both the 2 x 8 and 5 x 2 mg treatments resulted in similar levels of GFP expression 

in heart. D, Lis1 mRNA levels normalized to B2M mRNA levels from heart of 2 x 8 mg-injected no Cre control 

(CON)-, 5 x 2 mg-, and 2 x 8 mg-treated mice. Lis1 mRNA levels were reduced significantly in both the 5 x 2 mg- 

and 2 x 8 mg-treated mice relative to the no Cre control but were not significantly different from each other. E, 

Western blotting of brainstem and heart lysates from cardiomyocyte-specific Myh6 KO mice show reduced levels of 

Lis1 protein in heart, but not brainstem compared to no Cre control mice (CON). Dynein intermediate chain (DIC) 

was used as a loading control. F, Whole mount brain (right) and heart (left) from Myh6 KO mouse show 

recombination (GFP) in heart but not brain. Data in A, C, E, F are representative images from N = 3 mice for each 

genotype. The RNA quantification in B, D represent mean of data from N = 3 animals of each treatment and 

genotype +/- SD. Significance in B, D determined by one-way ANOVA; * p < 0.05, ***p < 0.001 (see Table 3.2 for 

details). Scale bars: 5 mm (A, C) and 2 mm (F). 
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CHAPTER 4 

REGULATION OF DYNEIN BY APC AND GSK3 

4.1 INTRODUCTION 

 Glycogen synthase kinase 3 (GSK3) is a constitutively active 

serine/threonine kinase that is a downstream target of the insulin signaling 

pathway. Patients with metabolic syndrome and diabetes become insensitive to 

insulin, which can contribute to an increased risk of neurological disorders and 

cancer (Larsson et al., 2005; Yuhara et al., 2011; Sasazuki et al., 2013; Guraya, 

2015; Ramjeesingh et al., 2016). Previously published work from our lab has 

established a regulatory interaction between GSK3 and dynein where GSK3 

phosphorylates and inhibits the motor when cells were serum-starved (Gao et al., 

2015). When serum was added back to the cells, or insulin was added to the 

medium, GSK3 was inhibited and dynein was activated leading to accumulation 

at microtubule minus-ends (Gao et al., 2015). 

APC interacts with GSK3 as part of the β-catenin destruction complex in 

the Wnt signaling pathway. Mutations in APC that cause colorectal cancer, such 

as the multiple intestinal neoplasia (MIN) mutation, disrupt this complex. 

Interestingly, many anti-diabetic drugs have been tested as chemopreventive or 

therapeutic treatments for colorectal cancer with mixed results (Gupta and 

Dubois, 2002; Chang et al., 2012; Malek et al., 2013; Park, 2013; Yin et al., 2014; 

Mendonca et al., 2015; Zhou et al., 2015; He et al., 2016; Ramjeesingh et al., 



www.manaraa.com

84 

2016). APC mutations have been linked to reduced efficacy of diabetes drugs as 

chemotherapeutic agents, perhaps in part due to the disruption of APC’s 

interaction with GSK3. 

 APC is also known to interact with microtubules and regulate their 

dynamics, which can affect dynein function. Importantly, results from our lab 

show that APC also binds directly to dynein and that the MIN mutation found in 

many patients with colorectal cancer disrupts this interaction. Additionally, 

presence of the MIN isoform prevents the regulatory effects of insulin signaling 

on dynein (Gao et al., 2017). In this chapter, I will discuss my contributions to 

these studies. 

4.2 RESULTS 

4.2.1 INSULIN SIGNALING PATHWAY REMAINS FUNCTIONAL IN CELLS WITH 

MUTATED APC 

In this study, we utilized two immortalized mouse colonic epithelial cell 

lines, one expressing wild-type (WT) APC (YAMC cells) and one expressing the 

truncated MIN isoform of APC (IMCE cells), to test the effects of mutated APC on 

insulin signaling and dynein function (Whitehead and Joseph, 1994). To establish 

if insulin signaling (and specifically GSK3 activity) would have the same effects 

on dynein in IMCE cells as YAMC cells, we measured the inhibitory 

phosphorylation of GSK3 on serine-9 (pS9) via western blot. As shown in Figure 

4.1A/B, the ratio of pS9-GSK3 to pan-GSK3 increases significantly one hour after 

treatment in both YAMC and IMCE cells, then falls back to baseline after 6 hours. 

There was no significant difference in the extent of pS9-GSK3 at 1 h between the 
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two cell lines (Figure 4.1C). This shows that the insulin signaling pathway has a 

similar effect on GSK3 activity in cells expressing WT APC or MIN, so the effects 

seen on dynein activity are either downstream of GSK3 phosphorylation, or due 

to other effects (e.g., protein-protein interactions). 

 

4.2.2 ANALYSIS OF MICROTUBULE CYTOSKELETON 

 Since APC is a known regulator of microtubule organization and dynein 

distribution could be altered by change in the microtubule cytoskeleton, we 

analyzed this factor as well. Figure 4.2 shows immunofluorescence images of 

YAMC and IMCE cells stained for α-tubulin after starvation (Figure 4.2A/B) or 1h 

insulin treatment (Figure 4.2C/D). All four groups had very similar microtubule 

morphology at this level, so general microtubule organization does not seem to 

be the major driver of the effects seen on dynein distribution. 

 Posttranslational modifications to tubulin can also affect motor function, so 

we next examined the distribution and levels of three different modified tubulin 

isoforms (tyrosinated, acetylated, and detyrosinated) via immunofluorescence 

and western blot, respectively. There did not seem to be a difference in 

localization or morphology of tyrosinated (Figure 4.3A-D), acetylated (E-H), or 

detyrosinated (I-J) microtubules between the two cell types or after insulin 

treatment. Western blot analysis of levels of these tubulin isoforms revealed no 

significant difference between the two cell types for tyrosinated or acetylated 

tubulin, but, surprisingly, there was significantly less detyrosinated tubulin 

(GluTub) in the IMCE cells than YAMC cells (Figure 4.3K-L). Recent studies 
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have shown that dynein motility is reduced on detyrosinated microtubules 

(McKenney et al., 2016), so a decrease in detyrosinated tubulin levels likely 

would not cause the decreased dynein activity seen in our studies. 

 

4.2.3 DYNEIN INTERACTS WITH THE C-TERMINUS OF APC 

In order to map the region of APC that interacts with dynein, we generated 

constructs containing two APC fragments. As seen in the schematic in Figure 

4.4A, the 746 amino acid N-terminal fragment (nAPC) is similar in size to the MIN 

isoform. This region contains the oligomerization domain and armadillo repeats, 

which interact with AMER proteins. The 272 amino acid C-terminal fragment 

(cAPC) contains the EB1 and PDZ-binding domains, but not the basic region 

known to interact with microtubules. These two fragments, along with full-length 

APC (FL-APC) were cloned into an EGFP vector to express EGFP-tagged 

versions of these proteins in cells. FL-APC was expressed in a small percentage 

of cells and it colocalized with dynein in some cellular protrusions (Figure 4.4B). 

nAPC aggregated in cytoplasmic blebs, suggesting the protein aggregates in 

cells (Figure 4.4C). This fragment did not seem to localize to cellular protrusions 

or colocalize with dynein as much as FL-APC. cAPC distribution was more 

diffuse and dynein staining in these cells was also more diffuse, suggesting 

cAPC might alter dynein distribution (Figure 4.4D). Interestingly, concurrent 

expression of both nAPC and cAPC greatly reduced cell viability and decreased 
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the amount of EGFP aggregation compared to nAPC-expressing cells (not 

shown). 

We also performed immunoprecipation (IP) of endogenous dynein to 

determine if the APC fragments and dynein were interacting directly, as opposed 

to simply localizing to similar subcellular regions (Figure 4.4E). nAPC was pulled 

down in the dynein IP, but was also present in the mouse IgG control, so we 

cannot say that this interaction is specific to dynein. However, cAPC specifically 

coprecipitated with dynein and not mouse IgG. This indicates that dynein 

interacts with the C-terminus of APC, which is lost in the truncating MIN mutation. 

 

4.3 SUMMARY AND DISCUSSION 

  Truncating mutations of APC, specifically the MIN mutation, disrupt its 

interaction with dynein and prevent the regulatory control of insulin signaling over 

dynein activity. This is likely due to the interaction between dynein and APC 

occurring via the C-terminus of the APC protein, which is lacking in the MIN 

isoform. While disruptions in microtubule organization or posttranslational 

modifications could hypothetically account for changes seen in motor activity, we 

did not see any dramatic changes in the morphology of the microtubule 

cytoskeleton. We did find that cells carrying the MIN allele had lower levels of 

detyrosinated tubulin, but this is unlikely to cause the effects seen, as dynein is 

less motile on detryosinated microtubles, so lower levels should increase dynein 

motility in IMCE cells. These results have implications not only in identifying 

mechanisms of carcinogenesis in APC MIN cancer models, but also in 
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determining the mechanisms of decreased diabetes drug efficacy in patients 

carrying the MIN allele. Additionally, this research could aid in identifying 

potential neurological conditions associated with the mutation. Future studies 

would identify changes in dynein function and regulation in neurons from APC 

MIN mice. Specifically, we plan to learn first whether GSK3 inhibition positively 

regulates motile events (i.e., increased speeds, run lengths, etc.) or if it is 

important only for the initiation of transport. Next, we could determine whether 

this regulation is affected in different compartments, such as the AIS or growth 

cone, of cultured neurons from WT and APC MIN mice. 

Additionally, we will examine whether there is crosstalk between the 

signaling pathways that regulate GSK3 and Lis1/Ndel1. The Lis1 knockout 

mouse described in Chapter 2 would be a good model for testing this at the 

cellular and organismal level. Treating Lis1 KO mice, or DRG neurons cultured 

from them, with GSK3 inhibitors to try to rescue or delay the phenotypes 

observed would give insights into the regulation of axonal transport. 

Finally, it will be interesting to determine the effects of the MIN mutation 

on the ability of axons to regenerate. This could be done in vivo using a sciatic 

nerve crush and measuring the number and distance that axons can grow past 

the injury site. In conjunction, total axon length and the number of neurons 

extending neurites in culture can be measured in DRG neurons from these mice 

to determine regenerative capacity. The mechanism underlying any defects seen 

in regeneration could be due to APC’s role as a +TIP in stabilizing microtubules, 

its role as an mRNA-binding protein, or its role in the β-catenin destruction 
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complex. Further analysis would be done to determine which of these 

mechanisms is the cause of any results obtained. 

 

4.4 MATERIALS AND METHODS 

Cell lines  

The murine young adult mouse colon (YAMC) epithelial cell line was derived 

from the colonic mucosa of a transgenic mouse generated by the introduction of 

a temperature-sensitive, interferon-inducible, SV40 T Ag, tsA58 (Immortomouse; 

(Whitehead et al., 1993)). This line is referred to as “WT”. The Immortomouse 

colon epithelial cell line (IMCE) was derived from the progeny of a cross between 

the Immortomouse strain and the Apc (min/+) mouse strain (Whitehead and 

Joseph, 1994). We refer to these as MIN cells. Both cell lines were first obtained 

from the Center for Colon Cancer Research at the University of South Carolina 

and later from a new batch from R. H. Whitehead (Vanderbilt University Medical 

Center). Cell lines were validated by genotyping and PCR. Cells were maintained 

at the permissive temperature (33°C) in full RPMI 1640 medium (2 mM 

glutamine, 10% fetal bovine serum [FBS], 0.5 U/ml penicillin, 100 μg/ml 

streptomycin, 5 U/ml murine γ-interferon, and 1% ITS [insulin, transferrin, and 

selenium; Cellgro]). Cos-7 cells were maintained in full DMEM medium (2 mM 

glutamine, 10% FBS, 0.5 U/ml penicillin, and 100 μg/ml streptomycin). Cell lines 
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were tested frequently for mycoplasma contamination using a mycoplasma 

detection kit from Thermo Fisher Scientific. 

Expression constructs and transfection  

EGFP-nAPC was generated by cloning a BspEI and HindIII fragment of full-

length human APC into a pEGFP C1 vector. cAPC was generated by PCR 

amplification of a 747–base pair fragment of the 3′ end of full-length human APC. 

An EcoR1 and BamH1 fragment was subcloned into a pET 30 EK/LIC vector 

(Novagen) for expression in Escherichia coli or the pEGFP-C1 vector for 

mammalian expression. The rat EGFP-IC1B construct was kindly provided by 

Kevin Pfister (University of Virginia, Charlottesville, VA). The IC1B mutant was 

described in Gao et al. (2015). All constructs were verified by sequencing. Cells 

were transfected using Lipofectamine 2000 or 3000 (Invitrogen) according to the 

manufacturer’s directions. 

Antibodies 

We used the following antibodies: CDK5RAP2 rabbit polyclonal antibody (pAb; 

Millipore), DIC mouse monoclonal antibody (mAb; 74.1; Santa Cruz 

Biotechnology), APC-M2 rabbit pAb (raised against the 15–amino acid repeat 

region; described in Wang et al., 2009), DIC mouse mAb (74.1; Santa Cruz 

Biotechnology), GSK-3β mouse mAb (3D10; Cell Signaling Technology), 

phospho–GSK3β (Ser-9) rabbit pAb (5B3; Cell Signaling Technology), GFP 

rabbit pAb (Ab290; Abcam), His-probe rabbit pAb (H-3; Santa Cruz 

Biotechnology), PPARγ1 rabbit pAb (H100; Santa Cruz Biotechnology), 

detyrosinated α-tubulin rabbit pAb (ab48389; Abcam), tyrosinated tubulin mouse 
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mAb (TUB1A2; Sigma-Aldrich); acetylated tubulin mouse mAb (Clone 6-11-B1; 

Sigma-Aldrich); and α-tubulin mAb (T5168; Sigma-Aldrich). 

Measuring GSK-3β inhibition  

PAGE was performed on WT and MIN cell extracts. Proteins were then 

transferred to nitrocellulose membrane. Membranes were blocked using Li-Cor 

Odyssey TBS Blocking Buffer and then probed with a mouse mAb to pan-GSK-

3β and rabbit mAb to phospho–GSK-3β (serine 9), both at 1:1000. LiCor IRDye 

680LT donkey anti-rabbit and 800CW donkey anti-mouse secondary antibodies 

were diluted in the Odyssey blocking buffer at 1:10,000. The membrane was then 

imaged using the Li-Cor Odyssey Sa system, and band intensities were 

measured using ImageStudio software.  

Protein interaction studies in cells Cos-7 cells were used because of the 

difficulty in transfecting the WT and MIN colon cell lines. Cells were transfected 

with EGFP, EGFP-nAPC, EGFP-cAPC, or EGFP-IC1B constructs. After 16 h, 

cells were starved for 4 h, lysed in the lysis buffer on ice for 30 min, and then 

centrifuged at 50,000 × g for 30 min. Cell lysates were incubated overnight with 

agarose beads conjugated to DIC antibody or normal mouse IgG (Santa Cruz 

Biotechnology). Beads were washed extensively in 50 mM Tris, pH 7.5, 0.5% 

NP-40, 0.1% Triton X-100, 125 mM NaCl, 1 mM MgCl2, and 5 mM EDTA and 

then in PBST, and then processed for SDS–PAGE and Western blotting. Lysates 

were prepared 24–36 h after transfection and no starvation step was included. 

Lysates were sonicated for 10 pulses at level 1 with 10% output three times, 

incubated on ice for 10 min, and then centrifuged at 17,000 × g for 20 min at 4°C. 
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Cell lysates were incubated overnight with agarose beads conjugated to DIC 

antibody or protein A beads alone. After transfection, cells were starved for 12 h 

and then exposed to 3 μM CT99021 for 12 h in full medium (containing both ITS 

and FBS). 

Statistics  

All analyses were carried out using GraphPad Prism, version 5.00 for Mac OSX. 

In most of the figures, error bars represent ±95% confidence interval (CI). One-

way analysis of variance (ANOVA) with Tukey’s multiple comparison tests or 

paired or unpaired, two-tailed Student’s t test were used as indicated in the figure 

legends. Immunofluorescence measurements were made using ImageJ Fiji. For 

graphs from Western blots, at least three repeats of the experiments were 

performed.
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Figure 4.1: Extent of GSK3 inhibition remains the same in WT and MIN cells. A, 

Representative Western blot of extracts from YAMC and IMCE cells treated with 

insulin for 0, 1, or 6 hours. pS9 (red); pan-GSK3 (green) B, Li-Cor densitometry 

analysis of three Western blots shows mean ± 95% CI. *p < 0.05 by one-way 

ANOVA. C, Average increase in S9/pan-GSK3 after 1 h was determined from five 

Western blots. Figure adapted from Gao et al., 2017. 
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FIGURE 4.2: Microtubule organization is similar in WT and MIN cells with and 

without 1-h insulin exposure. Normal full culture medium was replaced with 

serum- and insulin-free medium for 12 h, and then insulin (ITS, 10 µM) was added 

for 1 h to one set of cultures. A, WT cells and B, MIN cells with no added insulin or 

C, WT cells and D, MIN cells that were exposed to insulin for 1 h were fixed and 

processed for α-tubulin IF. Insets, individual cells at higher magnification (63X). 

Scale bars, 50 µm (20X image), 10 µm (inset). Figure adapted from Gao et al., 

2017. 
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Figure 4.3: Comparison of tubulin modifications in WT vs. MIN cells. A, Western blot of 

extracts from WT and MIN cells probed for DIC, tyrosinated tubulin (Tyr Tub), acetylated 

tubulin (Ac Tub) and detyrosinated tubulin (Glu Tub).  B, Band intensity was measured for 3 

separate experiments. The graph shows the ratio of MIN to WT levels for each antibody in A. 

The data are shown as the average +/- 95% CI, and statistical differences determine by 

ANOVA of three separate experiments. *=p<0.05, ***=p<0.001.  C-F. WT (left) and MIN cells 

(right) stained for tyrosinated tubulin at 0 and 1 hour after insulin. G-J. WT (left) and MIN 

cells (right) stained for acetylated tubulin at 0 and 1 hour after insulin. K-L. WT (left) and MIN 

cells (right) stained costained for acetylated and detyrosinated tubulin. Scale bar for C-J = 

25µm. Scale bar for K and L = 2.5µm. Figure adapted from Gao et al., 2017. 
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FIGURE 4.4: A C-terminal APC fragment expressed in Cos-7 cells 

coimmunoprecipitates with endogenous dynein. A, Location of an N-terminal 

746–amino acid APC fragment (nAPC) and a C-terminal 272–amino acid APC 

(cAPC) fragment used in several experiments. Also shown is the 850–amino acid 

MIN isoform. B, Western blot of proteins in a dynein immunoprecipitate. Top, 

endogenous dynein (end. DIC) is precipitated by a dynein antibody but not by 

nonspecific mouse IgG. Middle, EGFPnAPC is present in both the IgG and the DIC 

immunoprecipitate. Bottom, EGFP-cAPC coprecipitated specifically with dynein, not 

IgG. The lower anti-GFP–labeled band may be a proteolytic fragment or a modified 

peptide that is enriched in the DIC immunoprecipitate. C, Full-length APC fused to 

EGFP (green) transiently expressed in Cos-7 cells localizes along MTs in cellular 

protrusions. DIC (red) is concentrated in the cytoplasm but present near the 

peripheral regions of protrusions (arrows). D, EGFP-nAPC (green) is enriched in 

large aggregates in the cytoplasm. Very small puncta of EGFP-nAPC associate with 

DIC (red) in cellular protrusions at the cell periphery (arrow). E, EGFP-cAPC (green) 

is diffuse throughout the cytoplasm and is present in the nucleus. Scale bar, 10 µm. 

Figure adapted from (Gao et al., 2017). 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

Cytoplasmic dynein is a critical mediator of a diverse array of cellular 

functions, such as nuclear migration, multiple events during mitosis, and 

microtubule-based intracellular transport. These processes all must be tightly 

regulated to avoid potential disease states, such as neurodegeneration and 

cancer. This is can be done via protein-protein interactions with Lis1/Ndel1, 

dynactin, and APC amongst others, and posttranslational modifications of the 

motor itself or its regulators. Disrupting these regulatory entities can impair axon 

regeneration after injury, cause neurological diseases, and possibly play a role in 

cancer and diabetes. Specifically, haploinsufficiency of Lis1 during development 

causes lissencephaly in humans while postdevelopmental knockout of Lis1 in 

mice can cause pathology consistent with neurodegeneration, and mutations in 

APC can cause colorectal cancer. In the studies described in this dissertation, we 

further investigated the potential consequences of these disruptions on dynein-

dependent transport. 

The function of Lis1 during neurodevelopment has been well 

characterized due to mutations in this gene causing lissencephaly in humans. 

Since Lis1 is still highly expressed in the adult mouse nervous system, we 

wanted to investigate its role postdevelopmentally, focusing particularly on 
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axonal transport. To do this, we used an inducible knockout system to circumvent 

the effects of Lis1 depletion on developmental process like neuronal migration, 

spindle orientation and nuclear envelope breakdown (at least in post-mitotic cells, 

such as neurons), and interkinetic nuclear migration. This revealed an important 

postdevelopmental role for Lis1 in mice. Specifically, we saw a rapid decline in 

health, sensorimotor defects, and death. At the same time, we saw disruption of 

axonal transport, which was likely the cause of pathological changes in cultured 

DRG neurons (axonal swellings and altered neurofilament distribution) and in 

cardiorespiratory neurons in brainstem sections (chromatolysis). This suggests 

that Lis1 plays a critical role in neuronal maintenance, at least in part through 

axonal transport, postdevelopmentally. There were also defects in axon growth in 

cultured adult DRG neurons, which indicates Lis1 may play a role in axon 

regeneration.  

 In more broad terms, these experiments show that disruption of axonal 

transport (and potentially other Lis1-related cellular processes) can lead to a 

degenerative phenotype that primarily affects brainstem neurons and 

sensorimotor systems in mice. This is interesting because several 

neurodegenerative diseases are associated with defects in axonal transport, but 

it is not known whether this is a byproduct of other dysfunctional processes or 

one of the causes of degeneration itself. Our studies show that it is quite possible 

that impaired axonal transport is sufficient to cause axonal pathology and a 

similar behavioral phenotype to other neurodegenerative disease models, such 

as ALS. 
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 The differences seen between Lis1 deficient mouse models and human 

patients with lissencephaly were a little surprising at first, but may make sense in 

the context of long-distance axonal transport. That is, human neurons must 

extend their axonal processes over a much further distance than even the 

longest mouse axons. If Lis1 is responsible for regulating long-distance transport, 

then it makes sense that a 50% reduction in Lis1 protein levels would have a 

more noticeable effect on longer human axons than the shorter mouse axons. If 

we also consider the possibility that any defects in transport can lead to 

accumulation of effects over time and distance, then it is easy to see how 

reduced Lis1 levels in humans produce a much more severe phenotype than 

seen in mice.  

A similar principle may also partially why different parts of the nervous 

system are affected in the two models (cortex in humans, brainstem/motor 

neurons in our mouse model). First, in humans, Lis1 haploinsufficiency causes 

mitotic and migrational defects, which would preferentially affect cortical neurons 

because they require more cell divisions to become neurons than those in the 

brainstem. Additionally, these cortical neurons have to migrate much further in 

humans than mice, which may make this process more sensitive to reduced Lis1 

levels. This may be why Lis1 heterozygous mice, where Lis1 levels are reduced 

during development, don’t exhibit the drastic cortical defects observed in 

humans.  

In our inducible Lis1 knockout mice, these neurodevelopmental processes 

are bypassed, allowing us to investigate the effects loss of Lis1 may have in 
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addition to mitotic and migrational defects seen in lissencephaly patients. The 

fact that we observe minimal recombination and Lis1 loss in the cortex indicates 

that the phenotype observed is not due to cortical dysfunction. In fact, we see 

reduced Lis1 mRNA and protein levels, as well as signs of axonal pathology, in 

the brainstem of our Lis1 knockout mice. Sensorimotor defects are also seen in 

the hindlimbs of these mice. The susceptibility of these neurons to reduced Lis1 

expression may be due to their relatively long axon length.  

These results raise many questions that are potential avenues for future 

research. First, since the phenotype developed in the Lis1 knockout mice has 

many parallels with neurodegenerative diseases linked to defective axonal 

transport, such as ALS, Charcot-Marie-Tooth, and SMA-LED (Harms et al., 2012; 

Ikenaka et al., 2012; Sabblah et al., 2018), it is possible that mild perturbation of 

this interaction could produce a less severe phenotype than that caused by 

haploinsufficiency in humans. One way the interaction could be altered is if Lis1 

mutations exist that produce a milder effect than those that cause lissencephaly. 

Hypothetically, these mutations would have minimal impact on dynein-dependent 

developmental processes while potentially impairing transport-related processes 

postdevelopmentally. Our lab is currently researching published sequencing 

data, as well as working with the Greenwood Genetics Center, to determine if 

there are any such mutations known in the Lis1 gene that can be linked to other 

neurological diseases. 

It would also be interesting to determine what role Lis1 plays in axon 

regeneration. As described in Chapter 4, there are injury-induced signals that are 
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retrogradely transported by dynein, which bolster regenerative capacity (Hanz 

and Fainzilber, 2006; Ben-Yaakov et al., 2012). These signals may also require 

Lis1 for efficient transport to promote the switch from arborizing axon growth to 

elongating axon growth. Additionally, Lis1 and dynein are required to advance 

microtubules in the growth cone during fast axonal outgrowth and downregulation 

of Lis1 during development limits axonal outgrowth (Grabham et al., 2007; 

Kumamoto et al., 2017). Given the axon growth defects seen in DRG cultures 

from Lis1 KO mice, it will be interesting to determine the mechanism through 

which this is occurring. This is something we have already begun investigating by 

looking at the effect of Lis1 depletion on retrograde injury signaling via 

accumulation of the transcription factor, phospho-STAT3, in the nucleus of DRG 

neurons following sciatic nerve injury. 

To better understand the role of APC in dynein-dependent transport, we 

took advantage of a well-characterized cancer-causing mutation in the APC 

gene, the MIN mutation, to explore how disruption of APC function leads to 

aberrant dynein regulation. Our results show that the MIN mutation disrupts the 

normal dynein-APC interaction at microtubule plus ends. This also abrogates the 

regulatory effects of insulin signaling on dynein-dependent transport. In cells 

expressing only full-length APC, insulin signaling decreased GSK3-dependent 

phosphorylation of dynein, thus increasing minus-end dependent transport, 

shown by increased accumulation of dynein at the centrosome. However, in cells 

with the MIN mutation (IMCE cells), this regulatory effect was diminished and 

accumulation of dynein at the centrosome was not seen, despite similar levels of 
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insulin-dependent GSK3 inhibition. This could be an effect of decreased efficacy 

of insulin-sensitizing drugs as chemopreventive or therapeutic agents in patients 

with colorectal cancer. Further investigation is required to determine the precise 

implications of this dysregulation, but some potential effects include disruption of 

transport-dependent degradative processes, such as mitophagy and the endo-

lysosomal pathway, and altered mitochondrial distribution. If this effect extends to 

other dynein-dependent processes, then this could influence mitotic events such 

as nuclear envelope breakdown, microtubule capture at kinetochores, or spindle 

formation and orientation in APC MIN cells. Alterations in these processes could 

provide mechanistic insights into the initiation of MIN-induced colorectal cancer. 

One other project would determine the mechanistic role of APC in axon 

regeneration. Since APC serves many functions in neurons, including 

microtubule stabilization, RNA-binding, β-catenin destruction, and dynein 

regulation, it seems likely that the truncating mutation seen in patients with 

colorectal cancer could influence axon growth after injury. If defects in 

regeneration are seen, then we would investigate which of APC’s functions are 

the cause of this phenotype. There is evidence that APC plays a role in axon 

growth and arborization during development, as well as axon sorting in the PNS 

(Chen et al., 2011; Elbaz et al., 2016). 

While the studies conducted in this dissertation focus on two dynein 

regulatory pathways, there are a number of other proteins and signaling 

cascades that impact microtubule-based transport (e.g., dynactin, Ndel1, BicD2, 

etc). It is currently unclear how all of these elements coordinate to regulate 
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axonal transport. Having a comprehensive view of how axonal transport is 

regulated will help us understand how and why transport is perturbed in many 

degenerative diseases and how this contributes to the progression of the 

disease. This is an area of ongoing research, as it may be possible to manipulate 

different regulatory components to alleviate the effects of defective transport 

seen in many neurological diseases, such as Alzheimer’s, schizophrenia, and 

ALS. 
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